DANE, the next big thing
(after DNSSEC)
SIDN
Foundation for Internet Domain Registration in the Netherlands (SIDN)

• Registry for .nl
.nl in figures

Top 10 ccTLD's

1. DE (Germany) 15.2 m
2. TK (Tokelau) 10.8 m
3. UK (United Kingdom) 10.2 m
4. NL (Netherlands) 5 m
5. CN (PR of China) 4.1 m
6. RU (Russian Fed.) 4 m
7. EU (European Union) 3.67 m
8. BR (Brazil) 3 m
9. AR (Argentina) 2.7 m
10. AU (Australia) 2.5 m

(source: CENTR, sept 2012)
.nl today

- High domain density
- 1th TLD in terms of DNSSEC
The problem
PKI system drawbacks:

- Complex…
- Lack of quality…
- Architectural weaknesses…
- Implementation issues…
- But, more important (in this context)…
PKI system drawbacks

- User confusion
- Problems with CA’s
Where do you pay attention to in your browser?

Internet Explorer 9
- http://www.google.com/
- https://mail.google.com/mail/?shva=1#inbox
- https://www.bankofamerica.com/

Firefox 4
- http://www.google.com/
- google.com: https://mail.google.com/mail/?shva=1#inbox

Chrome 8
- www.google.com
- https://mail.google.com/mail/?shva=1#inbox
- Bank of America Corporation [US]: https://www.bankofamerica.com/privacy

Safari 4
- http://www.google.com/
- https://mail.google.com/mail/?shva=1#inbox
- https://www.bankofamerica.com/

And what about your mobile device?

Mobile Safari (iPad, iPhone - iOS 4.2)
- Google: www.google.com/
- Gmail: mail.google.com/mail/mu/#tl/Inbox
- Bank of America Corporation: www.bankofamerica.com/privacy/

Android Browser 2.2
- Google: http://www.google.com/
- Gmail: https://mail.google.com/
- Bank of America Corporation: https://www.bankofamerica.com/
Many CA's...

A-Trust-nQual-03
Chambers of Commerce Root
Global Chambersign Root
Chambers of Commerce Root - 2008
Global Chambersign Root - 2008
Actalis Authentication Root CA
AddTrust Class 1 CA Root
AddTrust External CA Root
AddTrust Public CA Root
AddTrust Qualified CA Root
AffirmTrust Commercial
AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
EC-ACC
America Online Root Certification Authority 1
America Online Root Certification Authority 2
Juur-SK
EE Certification Centre Root CA
Many CA’s…

Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Firmaprofesional CIF A62634068
Baltimore CyberTrust Root
Buypass Class 2 CA 1
Buypass Class 3 CA 1
Buypass Class 2 Root CA
Buypass Class 3 Root CA
Certinomis - Autorité Racine
Class 2 Primary CA
certSIGN ROOT CA
ePKI Root Certification Authority
CNNIC ROOT
COMODO ECC Certification Authority
AAA Certificate Services
Secure Certificate Services
Trusted Certificate Services
COMODO Certification Authority
ComSign Secured CA
ComSign CA
Cybertrust Global Root
Deutsche Telekom Root CA 2
Many CA’s…

S-TRUST Authentication and Encryption Root CA 2005:PNS
Certigna
DigiCert Assured ID Root CA
DigiCert Global Root CA
DigiCert High Assurance EV Root CA
[DISABLED] DigiNotar Root CA
DST ACES CA X6
Digital Signature Trust Co. Global CA 1
Digital Signature Trust Co. Global CA 3
DST Root CA X3
CA Disig
EBG Elektronik Sertifika Hizmet Sağlayıcısı
ACEDICOM Root
e-Guven Kok Elektronik Sertifika Hizmet Sağlayıcısı
Entrust Root Certification Authority
Entrust.net Secure Server Certification Authority
Entrust.net Certification Authority (2048)
[DISABLED] Digisign Server ID - (Enrich)
Equifax Secure CA
Equifax Secure eBusiness CA 2
[DISABLED] MD5 Collisions Inc. (http://www.phreedom.org/md5)
Many CA’s…

Equifax Secure Global eBusiness CA-1
Equifax Secure eBusiness CA-1
Root CA Generalitat Valenciana
GeoTrust Global CA
GeoTrust Global CA 2
GeoTrust Universal CA
GeoTrust Universal CA 2
GeoTrust Primary Certification Authority
GeoTrust Primary Certification Authority - G2
GeoTrust Primary Certification Authority - G3
GlobalSign
GlobalSign Root CA
Go Daddy Root Certificate Authority - G2
Taiwan GRCA
GTE CyberTrust Global Root
Digisign Server ID (Enrich)
Hellenic Academic and Research Institutions RootCA 2011
Hongkong Post Root CA 1
Izenpe.com
SecureSign RootCA11
Many CA’s…

ApplicationCA - Japanese Government
Microsec e-Szigno Root CA
Microsec e-Szigno Root CA 2009
NetLock Minositett Kozjegyzoi (Class QA) Tanusitvanykiado
NetLock Kozjegyzoi (Class A) Tanusitvanykiado
NetLock Uzleti (Class B) Tanusitvanykiado
NetLock Expressz (Class C) Tanusitvanykiado
NetLock Arany (Class Gold) Főtanúsítvány
Network Solutions Certificate Authority
IGC/A
QuoVadis Root Certification Authority
QuoVadis Root CA 2
QuoVadis Root CA 3
RSA Security 2048 v3
Security Communication RootCA2
Security Communication EV RootCA1
Security Communication Root CA
SecureTrust CA
Secure Global CA
AC Raíz Certicámara S.A.
Many CA’s…

Sonera Class1 CA
Sonera Class2 CA
Staat der Nederlanden Root CA
Staat der Nederlanden Root CA - G2
Starfield Class 2 CA
Starfield Root Certificate Authority - G2
Starfield Services Root Certificate Authority - G2
StartCom Certification Authority
StartCom Certification Authority
StartCom Certification Authority G2
Swisscom Root CA 1
SwissSign Platinum CA - G2
SwissSign Gold CA - G2
SwissSign Silver CA - G2
T-TeleSec GlobalRoot Class 3
TWCA Root Certification Authority
TC TrustCenter Class 2 CA II
TC TrustCenter Class 3 CA II
TC TrustCenter Universal CA I
TC TrustCenter Universal CA III
TDC OCES CA
Many CA's...

TDC Internet Root CA
Thawte Server CA
Thawte Premium Server CA
thawte Primary Root CA
thawte Primary Root CA - G2
thawte Primary Root CA - G3
Go Daddy Class 2 CA
UTN-USERFirst-Network Applications
UTN - DATACorp SGC
UTN-USERFirst-Client Authentication and Email
UTN-USERFirst-Hardware
UTN-USERFirst-Object
Trustis FPS Root CA
TÜBİTAK UEKAĘ Kök Sertifika Hizmet Sağlayıcısı - Sürüm 3
TÜRKTRUST Elektronik Sertifika Hizmet Sağlayıcısı
Certum CA
Certum Trusted Network CA
http://www.valicert.com/
Many CA's...

VeriSign Class 3 Public PCA – G5
VeriSign Class 3 Public PCA
VeriSign Class 1 Public PCA
VeriSign Class 1 Public PCA – G2
VeriSign Class 3 Public PCA – G4
VeriSign Class 2 Public PCA – G2
VeriSign Class 3 Public PCA – G2
VeriSign Class 1 Public PCA – G3
VeriSign Class 2 Public PCA – G3
VeriSign Class 3 Public PCA – G3
VeriSign Class 4 Public PCA – G3
VeriSign Universal Root Certification Authority
Visa eCommerce Root
Wells Fargo Root Certificate Authority
WellsSecure Public Root Certificate Authority
OISTE WISeKey Global Root GA CA
XRamp Global Certification Authority

Source: http://www.mozilla.org/projects/security/certs/
Bottom line:

- There are many CA’s (‘Certificate Authorities’)…
- There is risk of are ‘bad apples’
- No proper way of matching certificate with website
- No easy way to trust some CA’s more than others
- Unclear for Mr. Joe Average
Solution?

- Certificate pinning
 - Not really scalable, but it saved Google’s butt a number of times
- Notaries (like ‘converge.io’)
 - No uniform standard
 - Not very user-friendly
How DANE helps
The goal of DANE is to use the DNS (and DNSSEC) to provide clients with additional information about the cryptographic credentials associated with a domain.
The problem in pictures!
Handshake

• Is the certificate valid? Yes/No
• If Yes: proceed with handshake
• If No, abort with a warning

A valid certificate…
• Is not expired or revoked
• Validates with one of the many CA’s
• Has a matching common name
Man-in-the-Middle

ServerHello

ServerHello
The (fake) certificate is…

- Not expired or revoked
- Validates with one of the many CA’s
- Has a matching common name
The (fake) certificate is…
- Not expired or revoked
- Validates with one of the many CA’s
- Has a matching common name
DANE to the rescue
_443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971)
Genuine certificate matches the TLSA, fake certificate does not

==

_443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971)

!

_443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971)
Genuine certificate matches the TLSA, fake certificate does not

```plaintext
_443._tcp.www.example.nl. IN TLSA ( 1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971 )

==

!=

_443._tcp.www.example.nl. IN TLSA ( 1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971 )
```
Without DANE…

_without DANE…

_443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971)

_443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971)
Without DANE… both certificates would have been accepted

```
_443._tcp.www.example.nl. IN TLSA ( 1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971 )
```

```
_443._tcp.www.example.nl. IN TLSA ( 1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971 )
```
_443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b9 7983a1d16e8a410e4561cb106618e971)
443._tcp.www.example.nl. IN TLSA (1 0 1 d2abde240d7cd3ee6b4b28c54df034b97983a1d16e8a410e4561cb106618e971)
DNSSEC – the enabling technology

_443._tcp.www.example.nl. IN TLSA (
 1 0 1 d2abde240d7cd3ee6b4b28c54df034b9
 7983a1d16e8a410e4561cb106618e971)

_443._tcp.www.example.nl. IN RRSIG TLSA 8 5 300 (
 20130423112228 20130115102228 52044 example.nl.
 bnMyNbCO3MwRAvVmIX7KHpUGgIdpBFMz2ICMQ0gJz7UD
 A3tz0EKmBjqxOdwZaNj2KrtxFJ2ta7e1URYIHTpFF19
 +hJFTpeBJLKlJ636iLCyQCSXAYTLEiu7vOP2nnX8y6+M
 g+t0ku4XNpk/Hsole1mIA+ZxkJ8Zxj+YxdedUlo=)
Current status
DANE standard

- IETF RFC6698 (August 2012)
- Early adopter stage
- Tools to generate TLSA records
- Support in BIND 9.9.1 and up
- Support in various other software
DANE standard

- No widespread use of it (yet)
- Mozilla / Google Chrome are ‘looking into it’ and experimenting
- Add-ons / extensions exist
DANE standard

DANE patrol
By CZ.NIC labs
(fork of ‘Certificate Patrol’)

https://labs.nic.cz/page/1207/dane-patrol/
DNSSEC/TLSA validator
By Paul Wouters
(based on work done by CZ.NIC and D. Groenewegen)

http://people.redhat.com/pwouters/
This chart is a composite, derived from Gartner published Hype Cycles. The particular combination and comparison of items made here has not been reviewed by Gartner.
The state of DNSSEC

Uptake of DNSSEC signed domains in .com, .net, .edu

- .edu: 0.9%
- .net: 0.2%
- .com: 0.15%

source: Verisign labs
The state of DNSSEC

Uptake of DNSSEC signed domains in .nl, .cz, .br and .se

For .nl it is 26%!

source: PowerDNS
The state of DNSSEC validation

Worldwide ~4% DNSSEC validation

source: Verisign labs
The state of DNSSEC validation

Some countries are doing really well

<table>
<thead>
<tr>
<th>Rank</th>
<th># Resolvers</th>
<th>Avg Clients / Resolver</th>
<th>Weighted % of DNSSEC Resolution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>88.89%</td>
<td>Greenland</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>4</td>
<td>77.18%</td>
<td>Antigua and Barbuda</td>
</tr>
<tr>
<td>3</td>
<td>337</td>
<td>5</td>
<td>73.73%</td>
<td>Sweden</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>1</td>
<td>72.22%</td>
<td>Iran</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>30</td>
<td>63.22%</td>
<td>Libya</td>
</tr>
<tr>
<td>6</td>
<td>705</td>
<td>3</td>
<td>53.65%</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>12</td>
<td>52.53%</td>
<td>Slovenia</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td>52.04%</td>
<td>Equatorial Guinea</td>
</tr>
<tr>
<td>9</td>
<td>13350</td>
<td>9</td>
<td>48.57%</td>
<td>United States of America</td>
</tr>
<tr>
<td>10</td>
<td>177</td>
<td>6</td>
<td>47.68%</td>
<td>Finland</td>
</tr>
</tbody>
</table>

source: RIPE labs / Geoff Huston
Wrap up
Wrap up

- DANE adds additional layer of security to the PKI
- The standard is ratified by the IETF
- DANE is easy to implement, without much risk
- DNSSEC is required
- DNSSEC adoption is well on its way
- Early adopters are already playing with it
- Browser-vendors are interested
- Things are looking good!
THANK YOU