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Abstract—DNS operators, TLD registries, hosting providers,
and other Internet operators are frequently faced with the
same question: how to draw insights and knowledge from their
respective network traffic data in order to improve their services,
security, and operations? “Big data” processing solutions play a
major role as an enabling platform in this sense, especially with
the increasing growth of the volume of Internet traffic.

With this in mind, we have developed and presented in a
previous work ENTRADA, an open-source high-performance
Hadoop-based data streaming warehouse designed to both ingest
continuous streams of data and deliver interactive response times
over large datasets, even in a small cluster. Whereas in the
previous study we focused on the architecture and performance
evaluation, in this paper we present a series of use cases and
applications that cover phishing, botnets, email security, and
visualizations. These applications can be directly used by DNS
operators, TLD registries, and researchers to quickly analyze
their network data and improve their services, security, and
operations.

I. INTRODUCTION

DNS operators, TLD registries, hosting providers, and other
Internet operators are frequently faced with the same question:
how to leverage their network traffic data in order to improve
their security, services, and operations?

Before undertaking such task, a key element is to have the
required computational resources to perform such analysis,
especially with the constant increase in Internet traffic. For ex-
ample, at SIDN, the domain name registry of the Netherlands
(.nl), the traffic to and from our .nl DNS authoritative servers
in pcap format comprises roughly 1 TB/day. Worse, in many
data analysis cases, it is necessary to analyze longitudinal data,
i.e., data collected over long periods of time (months and/or
years), and it may be necessary also to test various hypothesis.

Performing efficient data analysis on such large datasets,
with interactive response times (within seconds or minutes) is
a major challenge. To cope with such scenarios, researchers
and operators have resorted to computer cluster-based solu-
tions as a way to achieve better performance, scalability, and
dependability [1], [2], [3], [4], [5]. Such clusters are often
based on Apache Hadoop [6] or other non-relational databases
(NoSQL) [7].

For the specific case of the DNS traffic, other solutions
exist (e.g.: [8], [9]), but they are either not open source or
they do not meet our performance requirements. To cope with
the performance requirements and lack of specific tools for
big data analytics on DNS traffic, we have developed and
made open source ENTRADA (ENhanced Top-level domain

Resilience through Advanced Data Analysis). ENTRADA is
capable of analyzing the equivalent of 53 TB of pcap files in
under 3.5 minutes, even in a cluster of just 4 data processing
nodes. It delivers such performance by converting pcap files
to Apache Parquet [10], which is a query-optimized format,
and by employing Impala, a multi-parallel SQL-like query
engine [11], both of which are also open source. We make
ENTRADA available at [12]. Moreover, we have evaluated its
performance in [13].

At SIDN, we use ENTRADA to store and analyze the
DNS traffic we receive at the authoritative DNS servers of .nl,
which is the country-code Top-Level Domain (ccTLD) of the
Netherlands. We use it as an enabling platform for supporting
applications that further improve both security and stability of
the .nl zone. ENTRADA has been operational for more than
1.5 years (as of January 2016), having stored more than 100
billion DNS query/response pairs.

This paper complements our previous studies [13], [14] by
(i) providing a more detailed coverage on the deployment of
ENTRADA and (ii) presenting a series of applications that
developed atop ENTRADA, which can be adapted by DNS
operators improve security and stability of their zone and by
researchers and Internet operators to better understand their
respective network traffic data.

The rest of this paper is divided as follows: first, in
Section II, we cover the background on DNS and top-level
domains. Then, in Section III, we cover the ENTRADA
architecture as well as its deployment at SIDN Labs. The
following two sections cover four types of applications that we
have developed with ENTRADA: two applications to detect
phishing and other malicious domains (Section IV) and two
other applications for detecting botnets based on DNS query
patterns (Section V). After that, we show how ENTRADA can
be used to evaluate the adoption and usage of two DNS-based
security standards for email security: DKIM and DMARC
(Section VI). We show two other visualization applications
– Phishing Campaigns and DNS Open Data – in Section VII.
We summarize this work in Section IX.

II. BACKGROUND

ENTRADA was developed at SIDN, which is the registry 1

of the Dutch ccTLD .nl. SIDN manages the authoritative DNS

1See a complete list of registries here https://www.iana.org/domains/root/db

https://www.iana.org/domains/root/db
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Fig. 1. ENTRADA data sequence flow

servers for .nl and handles the domain registration process of
currently over 5.5 million domain names.

Authoritative DNS data and domain resolution: so far,
ENTRADA is developed, but not limited, to store and process
DNS related traffic and therefore, the applications presented
in this paper rely on DNS traffic as well. For that reason, it
is helpful to have a basic understanding of the domain name
resolution process.

In Figure 1, we show, simplified, the resolution of a do-
main name followed by the steps carried out by ENTRADA.
In this example, a user wants to reach a website (e.g.
www.example.nl). Therefore, the user’s computer must first
resolve the domain name www.example.nl to an IP address.
The computer includes a lightweight DNS stub resolver that
connects to a recursive resolver (I in Figure 1), usually located
in a ISP network, and asks which IP address is assigned
to www.example.nl. The recursive resolver doesn’t know the
answer, and therefore initiates a recursive process first asking
one of the root servers (the “.” zone, II in Fig. 1, not shown)
for the IP address of the servers authoritative for .nl.

As soon as the recursive resolver receives the response, it
sends another query to one of the authoritative .nl servers
and asks for the IP address of example.nl (III in the same
figure). Again, the authoritative server responds with the
IP address for another name server, which is authoritative
for www.example.nl and which knows its IP address. After
receiving the final IP address, the recursive resolver forwards
this IP address back to the stub resolver and the user can
connect to the website. We refer the reader to [13] for more
details.

In order to reduce the number of queries sent by the
recursive resolver, local caches are used, which store queried
domain responses [15]. As a consequence, not every query
initiated by a stub resolver gets forwarded to the authoritative
name servers of .nl. As a result, only a share of the total num-
ber of queries for .nl domain names is stored in ENTRADA
and processed by the applications introduced in this paper.
This behavior is inherent to the way the DNS works.

The following section goes into more detail, how EN-
TRADA processes, stores and makes this data available.

III. ENTRADA ARCHITECTURE

In a nutshell, ENTRADA consists of three main parts, which
are also shown in Figure 1:

1) Network traffic converter (pcap to Parquet converter):
converts pcap data to Parquet [10] file format, which
we developed at SIDN Labs.

2) Apache Hadoop [16]: an open source distributed storage
and processing framework. While Hadoop is divided
into four main modules (common, Hadoop Distributed
Filesystem (HDFS), YARN, and MapReduce), we only
use the first two.

3) High performance query engine: Impala [11] and Spark
[17], or any Parquet compatible engine that reads files
directly from the HDFS.

We make a clear distinction between ENTRADA and its
applications: ENTRADA is an enabling platform that provides
functionalities for other applications (VII in Fig.1). These
applications, in turn, are considered apart of ENTRADA.

Next we cover the main components of ENTRADA.

A. Network traffic converter
We have discussed in [13] our data model and data pre-

processing. In this subsection, we summarize the main con-
cepts, referring the reader to our previous work for an exten-
sive discussion.

Network traffic data analysis with native pcap is a CPU
and I/O intensive task. For example a simple count of distinct
IP addresses for 100 TB of pcap data, would require reading
and parsing all the data. To deal with this problem over other
types of datasets, Google developed Dremel [18], a query
system for analysis of read-only nested data that delivers
aggregation queries (e.g., averages) for trillion-row tables in
seconds. Dremel combines multi-level execution trees and
columnar data storage [19].

Interactive response times are a must for any data streaming
warehouse (DSW), such as ENTRADA. In our case, we con-
vert pcap files to Apache Parquet [11] format, which is based
on Dremel. Besides enabling fast aggregation query response
times, Parquet employs encoding algorithms such as run
length, dictionary and delta encoding on entire columns, since
they have same-type values, reducing storage requirements.
From the appr. 85 GB of daily pcap data per authoritative
server, Parquet and Snappy, a compression algorithm we
employ, compress it to appr. 6 GB (after also filtering some
fields, as we discuss in [13].

Converting DNS Requests/Responses: To increase perfor-
mance and to reduce the complexity when performing analysis
of DNS data with ENTRADA, we created a data model
in which every DNS request is matched with its respective
response and stored as a single record. This solves the issue of
having to match and join the DNS query and response during
the analysis phase. We cover this data model in more detail
in [12].

Besides that, we also enrich the respective model with
metadata such as the autonomous system number and country
of the IP packet source address.



We have developed a converter for DNS, UDP, TCP, IP
and ICMP network data, which we make available at [12].
However, ENTRADA is not limited to these network protocol
models: it can be easily extended to any structured data format,
such as syslog files and Netflow data.

B. Apache Hadoop and HDFS

ENTRADA is designed to work on top of the Apache
Hadoop distributed processing framework. Besides the com-
mon tools, we use only the HDFS component from Hadoop.
HDFS allows to create a single logical distributed file system
across all available data-nodes. This filesystem is automati-
cally managed and distributed across the available data nodes,
regardless of the number of nodes.

We store our converted Parquet files on HDFS and employ
triple data redundancy (HDFS’ default, 3 copies of each data
block). Hadoop ensures the block copies are stored on distinct
physical data nodes.

C. Query Engines

As we also covered in [13], we chose to use Cloudera
Impala [11] as a query engine for several reasons. First, Impala
is an open source massively parallel processing (MPP) SQL
query engine, which enables analysts to make use of high-
level SQL queries to analyze the data, while it handles all the
data processing needed to retrieve the data from the respective
data nodes.

To access these Parquet files stored on the HDFS, we create
an SQL table with Impala that (i) represents the internal
Parquet data model and (ii) provides a mechanisms to access
all existing and the future added Parquet files as a single table,
independently of the number of files.

The Impala tables have read-only access to the data and
even deleting the table will not affect the Parquet data files.
Having a data format which is independent of the query engine
prevents an engine lock-in and allows us to use other query
engines with Parquet support such as Apache Spark [17],
which includes support for machine learning applications and
SQL-like data access.

D. ENTRADA Deployment

Our ENTRADA deployment consists of a Cloudera [20]
Hadoop on-premise cluster of 6 physical nodes (Figure 2).
We employ three types of nodes:

• Data nodes: where data is actually stored and replicated
using HDFS. Besides that, each data node runs an Impala
daemon. Any Impala daemon can be used to submit SQL
queries to, this daemon will then assume the role of
orchestrator and distributes query fragments to available
Impala daemons on the other data-nodes. We currently
use four data nodes and two more will be added soon.

• Metadata node: it uses a PostgreSQL database for storing
metadata about Impala tables and cluster configuration.
We configured Cloudera Hadoop to store all cluster con-
figuration details in PostgreSQL. Impala metadata such as
table descriptions is stored in the PostgreSQL database.
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Fig. 2. ENTRADA deployment architecture at SIDN Labs.

• Staging node: receives the pcap data from the name
servers and is responsible for converting this pcap data
to Parquet and for Hadoop cluster management

We use the data nodes for storage and query execution.
They have the following hardware configuration: a single 6-
core 1.9GHz CPU with 128 GB of RAM and 6 TB of storage.
Both metadata and staging nodes have the same CPU and
memory resources as the data nodes, with 2 TB of storage
instead. The combined cluster storage capacity is 24 TB. It
is possible to store an estimated 150 billion database rows,
where each row contains a DNS query and response pair.

Currently, our ENTRADA instance stores all the DNS traffic
from two .nl authoritative servers, starting from May 2014.
This corresponds to appr. 25% of the total DNS traffic to all
the .nl authoritative servers (∼400 M daily queries stored).
We refer the reader to [13] for more details and to [21]
for a detailed discussion of our data privacy framework that
conforms to both EU and Dutch laws.

Besides a deployment on physical hardware, ENTRADA
can also be deployed using cloud services. It is however
important to emphasize that Hadoop data replication assumes
every hard disk is a physical disk, which may not hold for
cloud services. We refer the reader to [22] for more on these
specific concerns.

E. Performance

ENTRADA delivers interactive response times by (i) em-
ploying Parquet [11], an optimized column-based file format
based on Google’s Dremel [18], and (ii) by using Impala [11],
an open source massively parallel processing SQL query
engine, as can be seen in Figure 1. For aggregation type
queries (e.g., calculating the average packet size), it takes 3.5
minutes to process the equivalent of 52 TB of pcap in a small
4 data node cluster [13]. This performance would be virtually
impossible to achieve using the same hardware and the pcap
format.

F. Source Code and Tutorial

We make the ENTRADA source code available at [12]
and provide a tutorial, examples, and various guidelines for
deploying an ENTRADA cluster.



IV. DETECTION OF MALICIOUS AND PHISHING DOMAINS

To reduce the success of phishing attacks, the industry has
developed a range of detection tools and provides blacklists
that contain malicious URLs or domains. In many cases, these
blacklists are compiled after a URL has been verified by a
human operator or detected in an email message. For example,
the Netcraft phishing blacklist [23] accepts user submissions
through a browser toolbar.

ENTRADA enables DNS operators, TLD registries and
security researchers to analyze query patterns in order to detect
phishing attacks. In this section, we cover two applications we
have developed for this use case: SIDekICk (Section IV-A) and
nDEWS (Section IV-B). Both are used to improve the security
of the .nl zone.

A. SIDekICk

Most phishing sites are hosted on compromised servers
using existing domain names, but a significant and dangerous
subset of all phishing domains consists of phishing domains
registered solely for a malicious purpose [24]. For example,
domain names imitating banks and credit card companies.
These domains are known to have a larger number of DNS
queries to authoritative servers in the very first hours after their
creation [25].

We have observed the same behavior for the .nl zone using
the ENTRADA platform. The graph on the right of Figure 3
shows the average number of DNS requests that we received
at one of the .nl authoritative name servers for all phishing
domains reported by Netcraft [23] (Jan–Aug 2015), while the
graph on the left shows the same metric for a random sample
of 20,000 newly created domain names (Jan-March 2015).

Based on this query pattern, we have developed SIDekICk
(SuspIcious DomaIn Classification) [26], an ENTRADA ap-
plication that attempts to automatically detect newly registered
phishing domains. SIDekICk integrates two data sources:
(i) registration data and (ii) DNS queries to the .nl authoritative
name servers, which are stored in ENTRADA.

SIDekICk employs a supervised classifier, which requires
a labeled training set during initialization. For this purpose,
we have chosen a training set with phishing domains obtained
from Netcraft, which consisted of a total of 1,900 domain
names covering a period of 7 months (from December 2014
until May 2015). For each domain d, we retrieved the fol-
lowing features: geographic distribution of resolvers querying
d, total number DNS queries for d, measurements of query
growth of d over a period of three weeks, and whether we were
able to observe a spike in queries on the day d got reported
as a phish.

With the help of the training data, the SIDekICk classifier
generates a decision tree classifier model [27], which auto-
matically weighs the different features and selects the most
significant ones on its own. SIDekICk observes newly created
domain names for three consecutive days. On each day, the
features are collected and classified by the trained decision
tree.

After the training phase, we evaluated SIDekICk for a
period of 31 days. In this period, we used it to analyze
61,100 newly registered domain names. In the same period,
Netcraft reported 10 phishing domains for .nl. SIDekICk, on
the other hand, reported 22 phishing domains and 11 domains
hosting other malicious content such as concocted web shops
selling fake products. The false positive rate of SIDekICk is
0.3 %, which accounts for only 200 of over 61,000 domains
being mistakenly classified as malicious. This suggests that
SIDekICk is able to support, or even replace, traditional phish-
ing detection tools for detecting newly registered phishing
domains. See [26] for more details on this research.

B. nDEWS

Another ENTRADA application we have developed is
nDEWS (new Domains Early Warning System), which em-
ploys the same data sources as SIDekICk but with a different
classification algorithm to detect suspicious domains. We have
presented nDEWS in [14], which we summarize here.

nDEWS uses ENTRADA to retrieve the following features
for each domain d added to the .nl zone: for each day the
total number of DNS requests for d (

∑
Req), total number of

unique source IP addresses querying for d (
∑

IPs), unique
countries from which queries for d originate (

∑
CC), and

unique Autonomous Systems (ASes) from which queries for
d originate (

∑
ASes). As shown Figure 3, malicious domains

are likely to have higher values for these features.
Unlicke the SIDekICk classifier, nDEWS employs the k-

means clustering algorithm [28], which aims at partitioning
the dataset into n clusters in a way that it minimizes the total
distance between the data points and the cluster’s correspond-
ing centroid. The advantage of k-means is that it does not
require any a-priori knowledge about the domains and does
not require labeled datasets/training, which allows it to better
cope with seasonal/diurnal patterns [29].

We classify every new domain into two clusters: “sus-
picious” and “normal”. Suspicious ones are those domains
that have higher values for the aforementioned features. On
average, we detected 12.2 new suspicious domain names every
day. Among the suspicious domains, there were phishing
domains as reported by the Netcraft [23] anti-phishing feed,
domains that distributed malware as reported by Google Safe
Browsing and VirusTotal [30], [31], but also benign domains
that received a large number of queries caused, for example as
a result of viral content spread through social networks (false
positives).

Currently, nDEWS is in a pilot phase. We notify two major
.nl registrars, on a daily basis, of domains that have been
classified as suspicious and are registered by their respective
customers, so they can take appropriate action based on this
information and provide feedback on the accuracy of the
nDEWS notifications back to us.

C. Discussion

Both SIDekICk and nDEWS illustrate how ENTRADA
enables us to easily build security applications to detect
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malicious activity. Traffic patterns can be analyzed using real-
time and historical data without human intervention, which
enables the detection of newly registered phishing domains in
near real-time. Also, by deploying these applications at the
TLD-level, we can keep track of the whole zone – a vantage
point that is not accessible for traditional phishing detection
techniques. Additionally, the described classifiers nDEWS and
SIDekICk can be extended easily, in order to detect not only
newly registered domain names, but also domain names that
are compromised, for example through a vulnerable content
management system (CMS).

V. BOTNET DETECTION

Botnets are used for a vast array of malicious activities:
sending spam, distributed denial-of-service (DDoS) attacks,
and hosting malware, among others. Independent of the botnet
architecture, one common feature is the need for a command-
and-control (C&C) server, which is a host from which the
bots can retrieve instructions [32]. Some botnets use a C&C
infrastructure based on domain names and before bots can
communicate with the C&C server, they need to resolve
its domain name. These DNS requests may be observed
with ENTRADA as well. In this section, we introduce two
ENTRADA applications for detecting botnet domain names
based on (i) NXDOMAIN responses (Section V-A) and on
(ii) specific resolver characteristics (Section V-B).

A. Detection through NXDOMAINs

To avoid detection, some botnets employ Domain Gener-
ating Algorithms (DGA) to generate thousands of random
domains that each bot may use to contact a C&C server [33],
where the algorithm may change every day. DGA-based
botnets are designed to make it more difficult to take down
the botnet. Earlier generations often used hard-coded domain
names to enable bots to contact the C&C server. Now, the cost
of registering thousands or millions domains of potential C&C
domains generated with a DGA every day, make preemptive
registration prohibitive.

As a consequence, DGA-based bots will issue many queries
to randomly generated domains of which only a few will
actually exist. Therefore, the vast majority of requests for
DGA-based domain names will result in the DNS authoritative

name server responding with a so-called ”non-existing domain
answer” (NXDOMAIN) [34].

We developed an ENTRADA application that analyzes the
DNS queries received at the .nl authoritative name servers
to determine whether a domain name is a potential C&C
server. For each domain name d not present in the .nl zone
(NXDOMAIN), we compute, every day, the number n of
requests. We sort the list of domain names by the number
of requests in descending order and analyze the top domain
names. By doing this, we were able to identify 17 DGA
botnet C&C server domain names over the past 1.5 years.
We registered them and configured the DNS records to point
to our sinkhole, in order to prevent them from being registered
by others and to be able to analyze the traffic between the bots
and the C&C server.

B. Fingerprint-based Botnet Detection

The .nl authoritative name servers receive queries from mil-
lions of distinct resolvers. We see resolvers that are operated
by large ISPs sending thousands of queries each hour, small
resolvers of home users which only occasionally send queries,
or network probes querying our servers for measurement
purposes. The behavioral patterns of these different classes of
resolvers often differ from each other wildly. Whereas most
resolvers show regular query behaviour adhering to the DNS
standards as defined by the IETF, some resolvers display a
rather unusual behavioral pattern. For example, some resolvers
send a disproportional high volumes of queries followed by
NXDOMAIN responses. Others query for domain names for
which a name server is not authoritative, only use TCP for their
queries, or use a limited range of source ports and query IDs.
Some of this behavior is the result of misconfigured resolvers,
others have their origin in malicious activity.

We use these characteristics to create a fingerprint for
resolvers that are used for malicious activities. For example,
botnets that send out spam, typically attempt to resolve the
mail address of their victims beforehand.

We have identified the unique characteristics of resolvers
used by a single botnet and use ENTRADA to continuously
analyze their DNS queries 2. We can detect this particular

2We cannot disclose those publicly or its respective botnet herders would
change it.
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botnet activity almost immediately and as soon as we detect
a resolver matching the botnet fingerprint we flag the corre-
sponding IP address and save it in a database.

Then, we share information about IP addresses geolocated
to the Netherlands with the Abuse Information Exchange
(AbuseHUB) [35]. Members of this platform include large
Dutch ISPs, which use the information to cleanup the botnet
infections located within their network. With this system we
are able to actively disrupt the distribution of spam-mail and
other malicious activity.

Figure 4a shows the total number of DNS queries from
bots of this particular botnet over the last 6 months. From
this graph we can derive that the activity of the bots strongly
varies over time and we can identify larger spam-runs in a
timely manner. Also, we can see in Figure 4b that most botnet
clients are located outside the Netherlands. This differs from
what we would expect for the average .nl domain name, which
is targeting mostly the Dutch market. This characteristic could
additionally be used to identify infected machines.

Of course, it is important that due to DHCP churn effects –
i.e., the ratio in which a user has his IP address changed by its
ISP – , it is hard to estimate the actual number of bots [36].
However, since we provide both IP address and timestamp to
AbuseHUB (which forwards this to the respective ISP), the
ISP can use its DHCP logs to identify the infected user using
the detected IP address.

C. Discussion

DNS-based botnet detection with ENTRADA allows for
light-weight and quick detection and in comparison with other
traditional botnet detection mechanisms like [37], it scales
well with large DNS traffic data sets. We have shown two
example applications, one that detect DGA-based domains and
another that targets a specific botnet. It may also be possible
to detected other DNS-based botnets by using their distinct
DNS query characteristics.

VI. EMAIL SECURITY

In order to cope with email spoofing (e.g.: a rogue mail
server impersonating legitimate ISP/email providers to carry
out spam campaigns) and improve overall email security, the

IETF standardized a series of DNS-based authentication and
authorization mechanisms. As part of our registry role, we are
interested in measure the adoption and usage of these standards
in the .nl zone. We next summarize these standards.

DomainKeys Identified Mail (DKIM) [38] is a DNS-based
email authentication method. It works as follows: whenever a
mail server A receives an email message from example.nl,
it can verify its authenticity by validating it with the sender
public key published in the DNS server authoritative for
example.nl. The public key for a domain is published as
a TXT record. Using this key to validate the DKIM-signature
in the email header, A can tell whether the message is indeed
sent by the mail server of example.nl.

The second DNS-based email security standard is the
Sender Policy Framework (SPF) [39]. SPF is used to specify
which hosts are authorized to send email for a particular do-
main name. SPF uses a specially formatted TXT record in the
DNS zone of the sender. For example, 192.168.0.0/24
for example.nl.

Finally, the third standard is Domain-based Message Au-
thentication, Reporting, and Conformance (DMARC) [40],
which builds on DKIM and SPF. A domain name owner
creates one or more DMARC policies, which describe the
action that should be taken when an email does not pass DKIM
or SPF validation. For example, it can be a simple p=reject
to indicate that all email that fails to conform to DKIM and
SPF should be discarded. DMARC policies are also published
using the DNS TXT record type.

Next we show how we can easily measure the adoption of
DKIM and DMARC using ENTRADA and SQL.

A. Standards Usage from a TLD perspective

Given we have access to a global view for the zone
we maintain (.nl), we can infer the adoption rates of these
standards by analyzing the volume of DNS queries we receive
for these particular types of records. This analysis requires
multiple steps.

The first step consists of identifying what type of DNS
queries and parameters are used by each of these standards.
All three standards publish their information as a TXT record
type in their respective authoritative servers. In specific:



• Both DKIM and DMARC use special subdomains: DKIM
uses the _domainkey and DMARC uses the _dmarc
subdomain format. Examples of DKIM and DMARC
records are mail._domainkey.example.nl and
_dmarc.example.nl respectively.

• SPF: for SPF, there is no standard format for subdomains
as with DMARC and DKIM. Therefore, at the .nl au-
thoritative server, we observe only a DNS query for TXT
record types. Since we do not publish the SPF records
for the domains (their authoritative name servers do),
we cannot determine which TXT queries are specifically
asking for SPF policies.

The second step consists of writing SQL queries that can
be issued to Impala to retrieve the respective data. We cover
this next.

B. DKIM and DMARC Usage in .nl
To determine the usage of DMARC for the domains in the

.nl zone, we use the ENTRADA SQL query in Listing 1. The
same query can be adapted to DKIM by replacing _dmarc
with _domainkey in the qname parameter.

In this query, we select TXT records (qtype=16) and
group the results by month. For this example, we use data
from only one authoritative server (server), but the query
can be trivially extended to a set of name servers. We make
sure to filter out TXT queries for non existing domains and
failed queries with the predicate rcode=0 (NO ERROR).
s e l e c t month , count ( d i s t i n c t domainname )
from dns . q u e r i e s
where q t y p e =16
and qname l i k e ’ dmarc .% ’ and r c o d e =0
and year= y e a r
and month= month
and s e r v e r =” ns1 . dns . n l ”
group by month

Listing 1. SQL query for distinct DMARC domain

We used data covering an 18 month period, with a SQL
query for each month of data, which is equivalent to 2.5 TB
of pcap data, which takes roughly 3 minutes for ENTRA
to process. Performing this analysis on native pcap files it
would take more than 3 minutes just to decompress the files.

Figure 5 shows the results. The first one, Figure. 5a, shows
a timeseries of the number of distinct domains queried in the
analyzed period. As can be seen, there has been an increase
for this metric over the last 18 months, which suggest that
DKIM and DMARC are increasingly being used.

However, it is also important to compare this growth with
the growth of the .nl zone in terms of numbers of registrations,
in order to tell whether the growth is related to the growth of
the zone or not. To do that, we normalized the numbers from
Fig. 5a with regards to the total number of domains in the .nl
zone that have received DNS queries for email records (MX
records). This is shown in Figure 5b. The Y axis, shows the
percentage with regards to the .nl zone file (total number of
domains). We see that, in fact, 27% of the .nl domains that
receive queries for MX records, also receive DMARC queries,
and 14.7% employ DKIM.

However, we need to keep in mind that these are numbers
on the fraction of the domains that get queries for DKIM and
DMARC records. This is an indication of the adoption of these
technologies, but it does not tell how many email messages are
ultimately protected by these standards. A DKIM validating
email server will only retrieve a DKIM public key from the
DNS if the DKIM header is present in a received email.
These DNS queries can therefore be used to measure DKIM
deployment for .nl domain names. DMARC however, does not
use a special email header, a mail server with DMARC support
will try to validate every received email. DMARC queries for
a domain name therefore not to prove that the queried domain
name supports DMARC. We can however use the queries to
infer the desire of email recipients for performing DMARC
email validation. Also, as discussed in Section II, caching at
the resolver reduces the actual number of queries we observe.

It is also important to notice that not every domain with
an MX record has DMARC, DKIM, and/or SPF records. To
measure the percentage of the domains that have these records
requires active scanning of the DNS, which is the scope of the
OpenINTEL project of which we are also partners [41] and
has been carried out by [42] as well.

C. DMARC and DKIM queries sources

To determine from which countries most DKIM and
DMARC queries originate, we employ the SQL query shown
in Listing 2. This single query allows us to produce a single
value for each country for the entire 18 month period dataset.
As discussed in Section III, this information was added by
geolocating the IP source address of the DNS request, using
the Maxmind [43] IP geolocation database.

s e l e c t c o u n t r y , count ( 1 )
from dns . q u e r i e s
where q t y p e =16
and ( qname l i k e ’% domainkey .% ’
or qname l i k e ’ dmarc .% ’ ) and r c o d e =0
and ( ( year =2014 and month>6) or year =2015)
and s e r v e r =” ns1 . dns . n l ”
group by c o u n t r y

Listing 2. DMARC/DKIM queries grouped by countries

The query shown in Listing 2 took 23.5 minutes to be
executed in our setup. We show the top 10 countries as source
of DMARC and DKIM queries to .nl in Table I. As can be
seen, 89,9% of all DNS queries originate from only the top 4
countries. Even though .nl is focusing on the Dutch market,
the Netherlands surprisingly rank 3rd behind the United States
and Ireland. By analyzing the US and IE queries we found that
this is caused by the presence of large email providers such
as Google, Microsoft and Yahoo in those countries.

To identify from which networks these queries originate, we
employ the query shown in Listing 3, which groups the results
by their respective Autonomous System Number (ASN). This
query also took 23.5 minutes to execute, as we show in Table
II. As can be seen, 85,4% of the DNS queries for DKIM and
DMARC records are performed by large email providers such
as Google, Microsoft, Yahoo, and AOL. The ”UNKN” AS is
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Fig. 5. DKIM and DMARC usage in the .nl zone.

Country # queries percentage
US 208,533,790 42.60
IE 84,515,235 17.26
NL 79,052,717 16.15
BE 67,963,161 13.88
FI 9,112,053 1.86
RU 7,306,873 1.49
DE 7,119,556 1.45
GB 5,897,734 1.20
CN 5,446,895 1.11
DK 2,958,891 0.60

TABLE I
COUNTRY DISTRIBUTION

Provider # ASN # queries percentage
Google AS15169 302,465,578 61.79
Microsoft AS8075 51,556,416 10.53
Unknown UNKN 15,788,699 3.22
AOL AS1668 12,971,456 2.65
Yahoo AS36647 112,83,129 2.30
Yahoo AS26101 101,24,857 2.07
Yahoo AS36646 9,150,523 1.87
Yahoo AS34010 45,22,388 0.92
IDC China Tel AS23724 4,520,819 0.92
Mail.ru AS47764 3,659,097 0.75

TABLE II
AUTONOMOUS SYSTEM DISTRIBUTION

used for situations where the Maxmind geolocation database
contains no mapping between the IP address and autonomous
system number.

s e l e c t asn , count ( 1 ) as t o t
from dns . q u e r i e s
where q t y p e =16
and ( qname l i k e ’% domainkey .% ’
or qname l i k e ’ dmarc .% ’ ) and r c o d e =0
and ( ( year =2014 and month>6) or year =2015)
and s e r v e r =” ns1 . dns . n l ”
group by asn
order by t o t desc

Listing 3. SQL query for AS query count

D. Parallel Queries and Optimization

The dataset we used for this research consists of 18 months
of name server data for one of the .nl authoritative name
servers and contains 73 billion rows. Each row in the dataset is

a composite of the original DNS query and its corresponding
DNS response.

With Impala, each SQL query runs as a single thread on
each data node. Since each data node has 6-cores, we would be
underutilizing ENTRADA’s capabilities this way. To improve
performance, the SQL query shown in Listing 1, queries one
month of data at a time. In this way, instead of having a single
query for an 18 month period, we run multiple queries, each
for for 1 month of data simultaneously, resulting in multiple
parallel threads, one per month, on the cluster. This improves
the performance significantly.

E. Discussion

Our results indicate that the usage of both DKIM and
DMARC in the .nl zone has been increasing slowly over a
period of 18 months. Especially large (free) mail providers
seem to be leading in the adoption of these technologies.
However, there is still plenty of room for more usage. For
further research, it would be interesting to find out if other
TLD operators observe the same behavior.

VII. VISUALIZATION

Many of the ENTRADA applications described above rely
on the identification of specific patterns in DNS traffic and
DNS packets. Visualizing this data is an important first step
because it enables ENTRADA users such as researchers and
network engineers to identify trends and suspicious activities.

This highlights a more general strength of ENTRADA,
which is its capability to allow its users to easily explore
large sets of data and extract interesting characteristics and
statistics. Data stored in ENTRADA can be accessed and
extracted through multiple APIs, such as the impala-shell,
through Python, using Impyla [44], or via the Java Database
Connectivity interface. As a result, ENTRADA works with
any tool of choice.

In this section we first show the visualization of phishing
domains. Then, we show how we use ENTRADA to produce
open aggregated datasets on DNS traffic on the .nl zone, which
are daily updated and can be found at [45].



Fig. 6. DNS security scoreboard: query pattern of a domain involved in phishing. The red bar corresponds to the day it was detected by Netcraft.

Fig. 7. DNS security scoreboard: shift on the geographical distribution of the
countries querying for a phishing domain

A. Phishing Campaigns

For DNS operators, it is of the essence to be able to
quickly visualize security events in their available datasets.
We have developed a visualization web application that em-
ploys ENTRADA, which we refer to as the “DNS security
scoreboard”. This application produces visualizations of the
query patterns of compromised domains utilized in phishing
campaigns within the .nl zone.

The “DNS security scoreboard” works as follows: (i)
first obtain two phishing blacklists: Netcraft’s Anti-phishing
feed [23] and PhishTank [46]. After that, we select only the .nl
domains (since we only have DNS data for those) and retrieve,
(ii) for each domain d involved in the phishing campaigns, the
following features: total number of DNS requests (

∑
Req),

total number of unique source IP addresses (
∑

IPs), unique
countries (

∑
CC), and unique Autonomous Systems (ASes)

(
∑

ASes), observed at our .nl authoritative servers. These
metrics are then combined with the phishing report and stored
in a PostgreSQL database. We then (iii) use a RESTful web-
application built with Javascript and the Highcharts visualiza-
tion library [47] which retrieves the data from PostgreSQL and
produces the visualizations.

Figure 6 shows a time series for a compromised .nl domain.
As can be seen, prior to the notification day (red bar), the
domain has a relatively stable (diurnal/weekly [29]) pattern
for the respective features. However, one day before the
notification, we can observe an increase of the features –
probably coinciding with the start of the “phishing” campaign.

Figure 7 shows the distribution of countries for the same
domain. The left figure shows the distribution for the 30 day
period before the domain was added to a blacklist, while the
right figure shows the distribution on the notification day, there
is a clear change in the distribution.

These visualizations help with identifying features that can
be later utilized in algorithms aimed at detecting malicious
domains, such as in [26].

B. DNS Open Data and Visualization

We also make a series of visualizations and aggregated
datasets available to the public at our .nl stats site [45]. These
stats include the number of registered domains in the .nl zone,
graphs on the DNS query type, response code, DNSSEC,
and many others. The site uses ENTRADA and updates itself
automatically on a daily basis. All the datasets are open and
are longitudinal (starting from May 2014).

Our stats site and data sets can be used by researchers,
registries and other Internet operators to understand the .nl
zone as well as to compare it with their own observations.

VIII. RELATED WORK

There have been several research works aiming at improving
the performance of analysis of large data sets. However, to
the best of our knowledge ENTRADA is the first platform
that uses off-the-shelf open source software to implement a
Data Streaming Warehouse (DSW). While providing similar
features, an existing solution such as DataDepot [1] only uses
customized, closed-source software. The open source DSW
DBStream [2] uses PostgreSQL as a query engine, whereas
ENTRADA employs the off-the-shelf Impala query engine
and Parquet file format based on Google’s Dremel [18]. Even
though a thorough benchmark still has to be carried out, a first
comparison already indicates that ENTRADA outperforms
DBStream: With DBStream, it takes more than 50 minutes
to analyze a 640 GB raw dataset on a 10-node cluster.
In contrast, with ENTRADA it takes less than 3.5 minutes
to analyze almost 4 times more compressed data (2.2 TB)
on a 6-node cluster. This work complements our previous
work [13] by showing a series of applications that can build
atop ENTRADA.

Analysis of off-line network traffic is presented by works
such as [3], [4], [5]. They store snapshot data in a Hadoop
cluster for short-term analysis. ENTRADA is designed to
be append only, which means that new data is continuously
appended but not updated.

Turing [8] is a commercially available closed-source solu-
tion for DNS big data analytics, developed by Nominet, the
registry for .uk domain names. There is no publicly available



information about the technical implementation of Turing. The
Turing developers chose not to use Hadoop or any other open
source NoSQL database but to develop custom storage and
computation layers. A direct comparison between ENTRADA
and Turing still needs to be carried out, but is difficult without
publicly available information on Turing.

The pcap to Parquet converter software we developed for
ENTRADA is partly based upon the Hadoop PCAP library
developed by RIPE-NCC [9]. This library is used to analyze
pcap data with Hadoop, using MapReduce [48] or MapRe-
duce based Apache Hive [49] which are both designed for
batch oriented processing. The start-up overhead of these batch
oriented processes result in a high overhead compared to
ENTRADA which uses Impala and Parquet.

IX. SUMMARY AND FUTURE WORK

This work complements our previous work [13], in which
we focused on the data model, architecture, and performance
evaluation of ENTRADA, a Hadoop-based data streaming
warehouse that we have developed and have made available
in [12].

In this paper, we present and discuss seven ENTRADA
applications that we use on a daily basis. We have shown two
applications to detect malicious and phishing domains [14],
two applications to detected botnets using DNS authoritative
data, and one application to measure the adoption of DNS-
based standards to improve email security. Moreover, we have
shown how visualization applications as well can be developed
on top of the ENTRADA platform.

We have used ENTRADA for more than 1.5 years and used
it with applications like the ones discussed here, to improve
both the stability and security of the .nl zone. We hope the
findings and insights presented here can help TLD registries,
researchers, and other Internet operators to analyze their net-
work traffic data. As future work, we will continue developing
ENTRADA and new ENTRADA-based applications.
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