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1: SIDN Labs 2: InternetNZ 3: USC/ISI

ABSTRACT
TheInternet’s Domain Name System (DNS) is a part of every web re-
quest and e-mail exchange, so DNS failures can be catastrophic, tak-
ing outmajor websites and services. This paper identifies TsuNAME,
a vulnerability where some recursive resolvers can greatly amplify
queries, potentially resulting in a denial-of-service to DNS services.
TsuNAME is caused by cyclical dependencies in DNS records. A
recursive resolver repeatedly follows these cycles, coupled with
insufficient caching and application-level retries greatly amplify
an initial query, stressing authoritative servers. Although issues
with cyclic dependencies are not new, the scale of amplification has
not previously been understood. We document real-world events
in .nz (a country-level domain), where two misconfigured domains
resulted in a 50% increase on overall traffic. We reproduce and
document root causes of this event through experiments, and de-
mostrate a 500× amplification factor. In response to our disclosure,
several DNS software vendors have documented their mitigations,
including Google public DNS and Cisco OpenDNS. For operators
of authoritative DNS services we have developed and released
CycleHunter, an open-source tool that detects cyclic dependencies
and prevents attacks. We use CycleHunter to evaluate roughly 184
million domain names in 7 large, top-level domains (TLDs), finding
44 cyclic dependent NS records used by 1.4k domain names. The
TsuNAME vulnerability is weaponizable, since an adversary can
easily create cycles to attack the infrastructure of a parent domains.
Documenting this threat and its solutions is an important step to
ensuring it is fully addressed.

ACM Reference Format:
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net Measurement Conference (IMC ’21), November 2–4, 2021, Virtual Event,
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1 INTRODUCTION
The Internet’s Domain Name System (DNS) [27] provides one of the
core services of the Internet, by mapping hosts names, applications,
and services to IP addresses and other information. Every web
page visit requires a series of DNS queries, and large failures of the
DNS have severe consequences that make even large websites and
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other Internet infrastructure fail. For example, the Oct. 2016 denial-
of-service (DoS) attack against Dyn [5] made many prominent
websites such as Twitter, Spotify, and Netflix unreachable to many
of their customers [40]. Another DoS against Amazon’s DNS service
affected large number of services [61] in Oct. 2019.

The DNS can be seen as a hierarchical and distributed database,
where DNS records [28] are stored in and distributed from authorita-
tive servers [18] (for instance, the Root DNS servers [51] distribute
records from the Root DNS zone [52]). As such, all information
about an end domain name in the DNS are served by authoritative
servers for that domain. This information is typically retrieved by
recursive resolvers [18], which answer questions originally posed
by users and their applications. Resolvers are typically operated
by a user’s ISP, or alternatively public DNS resolvers operated by
Google [15], Cloudflare [1], Quad9 [43], Cisco OpenDNS [38], and
others.

The configuration of authoritative servers and their records is
prone to several types of errors [2, 25, 27, 39, 55]. Here we are
concerned about loops where records required for resolution point
at each other. Cyclic dependencies occur when resolving a name
requires resolution of another name, that in turn refers back to
the first [39]. Loops can involve CNAMEs (§ 3.6.2, [27]) or NS
records (§ 2, [25]). For example, if the NS record for example.org
points to example.com and vice versa, then an attempt to resolve
any name within either domain will fail because the IP address for
both servers cannot be confirmed.

The first contribution of this paper is to report that, in the wild,
cyclic dependencies can result in a query cascade that greatly in-
creases traffic to authoritative servers. We call this amplification
TsuNAME (inspired by the destructive potential of a tsunami) and
describe the several factors that contribute to it in §2. TsuNAME am-
plifcation has happened multiple times in the real world. §3 shows
an event on 2020-02-01 at .nz, where a configuration error (not an
intentional attack) in two domains each having cyclic nameservers
(NS records). While normally these domains result in only a few
queries to .nz’s authoritative DNS servers, the misconfiguration
resulted in 50% increase in aggregate traffic volume (from 800M to
1.2B daily queries, the shaded area in Figure 1). While these servers
handled this increase in load, this large amplification shows the risk
a malicious attack could pose. Others have seen greater increases:
§6 shows a European ccTLD that experienced a 10× increase in
traffic due to TsuNAME.

These accidental events raise the question of what a motivated
attacker could do to exploit this problem. An intentional attack
could leverage multiple cycles to amplify moderate client traffic to
overwhelm authoritative servers. In addition, since DNS providers
often host multiple domains on shared infrastructure, other services
could suffer collateral DoS damage(we discuss this threat model in
Appendix F). This threat poses a great concern for any domains
and registrations points, such as TLDs and ccTLDs, who often
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Figure 1: Daily queries to .nz for all domains (top) and the
cyclic dependent domains (bottom two lines).

host domains that provide essential services to their users, such as
government websites, banking, and online shopping.

Our second contribution is to demonstrate this threat in con-
trolled conditions in §4. We emulate a TsuNAME event by setting
up multiple cyclic dependent domain names under our control on
our servers (so as to not harm others) and measure the consequence,
reaching an amplification factor of more than 500×. Google operates
Google Public DNS (GDNS), a large, popular public resolver ser-
vice [15] and makes up 8% of all queries sent to .nz [30]. We show
that GDNSwas responsible for the bulk of queries, but we also found
other vulnerable resolvers in 260 Autonomous Systems (ASes). Fol-
lowing responsible disclosure practices, we notified Google, Cisco
OpenDNS, and other TLD and resolver operators (§6.) We worked
with Google about GDNS (§4.5) and Cisco about OpenDNS, both of
which have since been fixed.

Our third contribution is to develop CycleHunter, a tool that
finds cyclic dependencies in DNS zone files (§5). This tool allows
authoritative server operators (such as ccTLD operators) to identify
and mitigate cyclic dependencies, preemptively protecting their
authoritative servers from possible TsuNAME attacks. We use
CycleHunter to evaluate the Root DNS zone and 7 other TLDs
(∼185M domain names altogether), and found cyclic dependent do-
mains in half of these zones. We made CycleHunter publicly avail-
able on GitHub and we thank the various contributors that have
helped improve the tool. We have carefully disclosed our findings
with the relevant DNS communitiesand include their contributions
and feedback (§6) and discuss ethics around our disclosure and data
release policies in §7.

2 THE TSUNAME PROBLEM
The Cause: The fundamental problem in TsuNAME is a cyclic de-
pendency that amplifies a traffic sent to authoritative servers. When
two zones have name server (NS) records that point at each other,
a recursive resolver trying to resolve a name in that zone will loop
between the two, trying to break the cycle. These queries mean a sin-
gle query from a client to result in recursive resolvers placing many
queries against the authoritative servers, perhaps overwhelming
authoritative server capacity. Amplification in TsuNAME amplifi-
cation is this end-to-end effect, with several contributing factors
described below—a more complex process than traditional DNS
amplification where a short query directly creates a large reply [23].

The potential of DNS cycles was documented in the initial speci-
fication in 1987 [27] and was called out as an implementation risk
in 1993 [25]. Nevertheless, cyclic dependencies were noted as a
continuing risk in 2004 [39], and they cause huge traffic volumes
even in 2020 (§3). The contribution of our paper is not to document
cyclic dependencies as a new problem, but to show that their im-
pact can be huge even today, and that impact can be amplified by
modern recursive resolver architectures.

DNS cycles cause a problem when an end-user’s query results in
excessive traffic to authoritative DNS servers. However, the amount
of traffic depends on the interaction of a number of components of
the DNS system:

(1) The injection rate of client queries to the cycle.
(2) Stub resolvers query retries and parallel queries [62].
(3) The number of independent caches in recursive resolver

services [44, 53].
(4) If recursive resolvers cache negative replies.
(5) If recursive resolvers send additional requests for an unre-

solved pending request.
(6) Recursive resolver limits on the number of queries made

when responding to an incoming request.
We careful example components (3) to (6) in this paper, since as

infrastructure, they are easier to mitigate.
The Threat: The risk of TsuNAME is that it is “weaponizable”.

The authoritative servers of any zone with third-party registration
are at risk. An adversary can register two or more domains, later
reconfigure them to create a cyclic dependency, then inject client
traffic from a botnet. TsuNAME causes recursive resolvers amplify
injected traffic; in some prior events by more than 500×. Regis-
trating domains without cycles is easy, cheap, and benign. The
adversary can then activate the attack by reconfiguring to create a
cycle and triggering traffic from a botnet—none of these steps are
visible to the authoritative operator until the attack takes effect.

Although we (§3) and others (§6) encountered the problem by
accident, we want to prevent its intentional use. We expand on this
threat in Appendix F.

Recommendation:Our recommendation is the same as 1987 [27]
(and repeated in 1993 [25]): resolver implementations must “bound
the amount of work. . . so a request can’t get into an infinite loop or
start a chain reaction. . . even if someone has incorrectly configured
some data”.

We add one prescription and one recommendation to this guide-
line: all recursive resolvers must implement negative caching, so they
do not repeatedly retry a cyclic question. Negative caching means
recording (and replying) replies that are errors, replying imme-
diately to a query from a new client rather than repeating the
amplification. This design choice would have mitigated the prob-
lems that we report on below, and has been deployed by Google
Public DNS (§4.5 and other vendors §5.3).

We also recommend that operators of parallel resolution systems
to share caches between resolvers, and we strongly encourage
recursive resolvers to avoid making duplicate requests for the same
content when one request is still being resolved. (Authoritative
servers typically already “cache” results in memory; additional
caching does not reduce their network traffic.)
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We encourage zone operators to scan for cycles using our tool
to detect accidental cycles (§5).

While cycles were recognized as a problem more than 30 years
ago, the problem is pressing today because evolution of the system
has amplified query rates: the “happy eyeballs” algorithm doubles
queries [62] and large public resolvers often use parallelism across
many machines without shared caches [44]. Recommendations
from 1987 and 1993 emphasize the role of the single recursive re-
solver without considering the interactions in today’s DNS ecosys-
tem.

3 TSUNAME’S IMPACT IN .NZ
On 2020-02-01, two domains in .nz (DomainA and DomainB) had their
NS records misconfigured to be cyclically dependent. DomainA’s NS
records were set to ns[1,2].DomainB.nz, while DomainB’sNS records
pointed to ns[1,2].DomainA.nz. This misconfiguration increased the
query volume to .nz’s authoritative servers by 50%. Figure 1 shows
this problem, as measured at the authoritative servers of .nz. The
.nz operators manually fixed this misconfiguration more than two
weeks later on 2020-02-17, returning query volumes to normal.

We describe this problem here, reproduce it in §4, and discuss
detection in §5. While this traffic increase was large, .nz servers are
overprovisioned and handle other bursts (such as those on 2020-02-
20 and -23 in Figure 1), but a malicious attack could create much
greater traffic volumes using more domains and more initial traffic.

3.1 Query sources
During the sixteen-day period of this TsuNAME event (2020-02-[01–
17]), there were 4.07B combined queries for DomainA and DomainB,
with a daily average of 269M. Figure 2a and Table 11 show the
top 10 ASes by query volume during the event period. The over-
whelming majority (99.99%) of all traffic originated from Google
(AS15169), with only 324k queries originating from 579 other ASes.
Queries from Google outnumbered the other sources by 4 orders of
magnitude.

For comparison, Figure 2b shows the top 10 ASes for both do-
mains during the “normal” periods when there was no cyclic depen-
dency, spanning over the 16 days before and after the TsuNAME
period (2020-01-[24–30] and 2020-02-[18–28]). During this “nor-
mal” period, Google sent no more than 100k daily queries for
both DomainA and DomainB. During the TsuNAME period, however,
Google’s query volume multiplied 5453× (Figure 2c). No other AS
had an traffic growth greater than 100× in the same period.

3.2 Scrutinizing Google queries
To understand Why was Google responsible for so many queries? we
turn to: How long and how many times should resolvers retry when
resolving domains with cyclic dependencies? And how aggressive
should they be when finding answers?

Previous research has shown resolvers will hammer unrespon-
sive authoritative servers [34], generating up to 8× typical query
rates, depending on the DNS records’ time-to-live (TTL) value. But
in the case of cyclic dependencies, authoritative servers are respon-
sive and resolvers bounce from one authoritative server to another,
asking the same sequence of questions repeatedly. This difference
allows recursive resolvers to generate even more traffic than with
unresponsive servers.
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Figure 2: Top 10 ASes querying for Domains A and B, for .nz.
TsuNAME period: Feb. 1–17, normal period: Jan. 24–30, Feb.
18–28, 2020.

Given that Google was responsible for virtually all queries during
the .nz TsuNAME event for the cyclic dependent domains (§3.1),
we isolate and study the queries from Google. Table 1 shows the
breakdown of the query names and types from Google during the
.nz event. We see that most queries to .nz are for A and AAAA
records for each of the two domain’s own NS records (NS records
store the authoritative server names of a domain, while A [27] and
AAAA records [57] store each server’s IPv4 and IPv6 addresses,
respectively.) With a cyclic dependency, these queries can never
be resolved, since each authoritative server refers resolvers to the
other. The NS records for the zones, however, were readily available
within the parent .nz zone – which explains the lower volume of
queries compared to the A/AAAA requires.

3.2.1 Interquery interval. How frequently did GDNS resolvers
send .nz queries for these domains during the TsuNAME event?
We estimate this query rate by measuring the inter-query interval
for queries with the same query name and type from GDNS to the
.nz authoritative servers on one day (2020-02-06).

Figure 3 shows the results (for space constraints, we show only
results for the queries highlighted in the green rows of Table 1). We
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Query Name Query Type Queries(v4) Queries(v6)
DomainA.nz NS 13.0M 10.9M
DomainB.nz NS 4.3M 3.0M

ns1.DomainA.nz A 266.1M 281.3M
AAAA 266.2M 281.4M

ns2.DomainA.nz A 266.1M 281.2M
AAAA 266.1M 281.4M

ns1.DomainB.nz A 222.6M 237.9M
AAAA 222.5M 237.7M

ns2.DomainB.nz A 222.5M 237.7M
AAAA 222.3M 237.5M

Table 1: Google queries during the .nz event
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Figure 3: Google (AS15169) resolvers on 2020-02-06, during
.nz TsuNAME event: time in between queries.

start with the NS queries to DomainA.nz. Figure 3a shows individual
resolvers on the x axis, and the number of queries they sent on the
right y axis. We see that all resolvers send fewer than 10k queries.
On the lefty axis, we show the interval inter-quartile range (IQR) of
the time between queries (with the white line showing the median
value in ms). Given that the TTL value of these records is 86400 s
(1 day), we should not see (assuming low packet loss) any resolver
sending more than one query on this date (except for multi-cache or
anycast-based resolvers [34, 44]). (While both domains in Figure 3
show some recursive resolvers query frequently, we expect the
recursives see different offered load from clients, and we sort them
differently, so the curves differ in detail.)

As shown in Table 1, the bulk of queries is for A and AAAA
records of the authoritative servers of DomainA and DomainB . Fig-
ure 3b shows the results for A records of ns1.DomainA.nz. We see
three categories of resolvers, according to their query volume,
which we highlight in different colors. The first group – heavy

Zones
sub.verfwinkel.net sub.cachetest.net

NS ns.sub.cachetest.net ns.sub.verfwinkel.net

TTL 1s 1s
Table 2: New domain experiment setup.

hammers – sent 162-186k queries on this day, one every 300ms.
The second group – moderate hammers – sent 75-95k daily queries,
one every 590ms – roughly double the rate of the heavy hammers.
The last group, which covers most of the addresses – is less ag-
gressive: they sent up to 10k daily queries each. Given they are
more numerous than the other group, their aggregated contribution
matters. (Appendix A shows the results for AAAA records, which
are similar to Figure 3b).

This heterogeneity in Google’s resolver behavior is surprising.
We notified Google and were able to work with them on the issue,
and they both confirmed and fixed their Public DNS service on
2020-02-05. We discuss this in detail in §4.5.

4 REPRODUCING TSUNAME
To understand TsuNAMEwe next recreate the problem on the Inter-
net through controlled experiments (§4.1), the role of clients (§4.2),
multiple-step cycles (§4.3), and recursives (§4.4 and §4.5).

4.1 Controlled Experiments on a New Domain
To determine the lower bound on traffic to authoritative servers
experience during a TsuNAME event, we carry out a controlled
experiment from RIPE Atlas [47] to a new domain under our control.
Since this is a new domain, we know there is no caching or prior
query history.

Setup: We configure two third-level domains with cyclic depen-
dencies (Table 2). We use third-level domains since TsuNAME traffic
goes to the parent of the cyclic domains. A third-level domain al-
lows us to isolate traffic in our (second-level-domain) authoritative
servers, protecting top-level domains that are widely shared. If we
create a cycle in a second-level domain like example.org, then traffic
goes to the widely used .org authoritative servers.

We ran our own authoritative servers using BIND9 [22], popular
open-source software for authoritative DNS service. We ran on
Linux VMs located in AWS EC2 in Frankfurt, Germany.

To minimize caching effects, we set the TTL for every record in
the zone to 1 s (Table 2). Short TTLs maximize the chances of cache
misses and avoid hiding misbehavior with caches.

Vantage points (VPs): we use ∼10k RIPE Atlas probes [47, 48]
as VPs. RIPE Atlas provides more than 11k active devices (probes
or VMs), distributed over 6740 global ASes (as of Jan. 2021). Atlas
supports custom queries of standard types (ICMP, DNS, HTTP,
etc.), and they archive and provide public access to research results,
including our experiments [46].

We configure each probe to query once for an A record for
PID.sub.verfwinkel.net., where PID is the probe unique identi-
fier [49]. Unique queries reduced the risk of accidentally warming
up the resolver’s caches with queries from other VPs. The query
is sent to each probe’s local resolver, as can be seen in Figure 4.
As one probe may have multiple resolvers, we identify a VP using
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Ripe Atlas Probes

Recursives/forwarders
(1st level

e.g.: modem)

Recursives
(nth level)

e.g: ISP resolv.

Authoritative
Servers

sub.verfwinkel.net

Atlas

R1a
CR1a

R1b CR1b

Rna
CRna

... Rnn
CRnb

AT1 ... ATn

Figure 4: Relationship between Atlas probes (yellow), recur-
sive resolvers (red) with their caches (blue), and authorita-
tive servers (green).

the combination of a probe’s unique ID and the last resolver’s IP
address.

Results: Table 3 shows the results for this measurement (“new do-
main” column). We see ∼9.7k Atlas probes placing queries through
16.8k recursive resolvers (the vantage points). With a few additional
forwarders, they send 18,715 queries to their first level recursives
(archived at Ripe Atlas and accessible at [46]), which are mostly
answered to the probes with SERVFAIL status codes [27] or simply
timing out – both statuses signal domain name resolution issues to
the client.

Heavy traffic growth on the authoritative server side: Authoritative
servers see queries from ∼11k IPs addresses belonging to nth -level
servers in ∼2.6k ASes (traffic into top green circles in Figure 4). As
each Atlas probe query its recursive resolvers some forward their
queries or ask multi-level resolvers [34, 44, 53]. Our authoritative
servers see only the final resolver in the chain. In total, these re-
solvers send ∼ 8M queries to both authoritative servers, a 435×
amplification factor compared to the 18k queries at the client-side.
We believe this amplification contributes to the .nz event.

Identifying problematic resolvers. Figure 5 shows the timeseries
of both queries and resolvers we observe at our authoritative servers
(each line shows a different authoritative server, one per domain).
We identify three phases in this measurement. First warm-up (the
narrow, green shaded area, x < 14:30 UTC) when the VPs send
the queries we have configured. We see more than 150k queries
(Figure 5a) to each authoritative server, from roughly 7.5k resolvers
(Figure 5b). In this initial rush each recursive repeats queries trying
to resolve the cycle. Many have a query limit and break out after
this rush.

After this initial rush, there are no new client queries, and at
14:30 we enter the looping phase, when authoritative servers keep
on receiving queries from some problematic resolvers that do not
have a query limit (the salmon-colored area, “Resolvers in Loop”).
For the next hour a few resolvers (574 from 37 ASes) seem to loop
indefinitely (Table 4).

Finally, in the offline phase, after 19:30 UTC, we stop our au-
thoritative servers, but keep observing incoming queries. As our
servers become unresponsive, even problematic resolvers cannot
obtain answers and stop looping. Without our manual intervention
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Figure 5: New domain measurement: queries and unique re-
solvers timeseries (5min bins)
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Figure 6: New domain: queries per AS with problematic re-
solvers

(stopping our servers), one may wonder when (or if!) these loops
would stop. We show in §5.2 that these loops may last for weeks.

Other ASes also affected: Figure 6 shows the histogram of queries
per source ASes. We see than the AS with most traffic (Google,
15169) is responsible for 60% of the queries. Google here has a far
more modest fraction than on the .nz event (§3). We see looping
traffic from other ASes as well, such as AS200050 (ITSvision) and
AS30844 (Liquid Telecom). In fact, we found in this experiment that
37 ASes were vulnerable to TsuNAME (Table 4). Although posing
a much lower query volume than Google, old resolver software
represents an ongoing risk.
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Atlas VPs Sinkholed
Measurement New Domain Recurrent TripleDep CNAME NA
Frequency once 1800s Once Once NA

Qname $PID.sub.verfwinkel.net. $PID-R.vuur.verfwinkel.net.
$PID-R.jupiter.

essedarius.net.

minuano.

essedarius.net.
Multiple

Query Type A A A A Multiple
Date 2020-06-08 2020-06-[09,10] 2021-04-13 2021-04-13 2020-11-18
Duration 6h 17h 3h 3h 22h

Client Side
Atlas Probes 9724 9382 9622 9646 NA
VPs 16892 13030 13504 17638 NA
Queries 18715 727778 13579 17736 NA
Responses 18715 727778 13579 17736 NA

SERVFAIL 12585 482470 13437 8841 NA
Timeout 5969 238864 0 0 NA
REFUSED 103 4240 114 97 NA
FORMERR 28 1084 0 13 NA
NOERROR 22 95 15 8791 NA
NXDOMAIN 8 162 0 7 NA
NO ANSWER 11507

Authoritative Server Side
ns1 ns2 ns1 ns2 4 combined 4 combined 4 combined

Querying IPs 11195 11572 16127 16328 17272 10730 41433
ASes 2587 2611 2408 2446 2554 2412 3615
Queries 4064870 4080446 35546101 36917334 5349129 156356 110282443
Responses 4064801 4070035 35546090 36917300 5349129 156356 110282443

Table 3: TsuNAME Emulation Experiments. Datasets: [46].

.

Queries Resolvers ASes
New domain 7.5M 574 37
Recurrent 30.6M 1423 192
Sinkhole 18.1M 2652 127
Unique 56.2M 3696 261

Table 4: Problematic Resolvers found on experiments

How often do the problematic resolvers loop? For each problematic
resolver, we compute the interval between queries for the query
name and query type, for each authoritative server, as in §3.2. Fig-
ure 7 shows the top 50 resolvers that send queries to one of the
authoritative servers for A records of ns.sub.cachetest.net. We see
a large variation in behavior. The resolver with most queries (at
x = 1) sends a query every 13ms, with 858k queries during the
looping phase. Resolvers ranked 7 to 19 loop every second. Finally,
resolvers ranked 20 to 50 all belong to Google and behave simi-
larly, sending queries with a median interarrival of 2.9 s. Taken
together Google resolvers are responsible for most of the queries
(see Figure 6), but they are not the most aggressive individually.

Recurrent queries: New queries from clients (“recurrent queries”)
make the problem worse. We run another experiment using RIPE
Atlas, but with probes sending new queries every 10 minutes (“Re-
current” column in Table 3). Details are in Appendix B, but fresh
queries from clients recapitulate the initial influx of queries for
recursive resolvers that do not have a negative cache for the cycle.
We find a total of 1423 vulnerable resolvers, from 192 ASes (Table 4),
far more than with the New Domain experiment.
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Figure 7: New domain: IQR and queries for A records of
ns.sub.cachetest.net

4.2 Broader Clients and Recursives
Experiments with RIPE Atlas see a specific set of locations and
recursive resolvers. To reproduce this experiment with a broader
set of clients and recursives, we carry out a similar experiment with
a sinkholed domain.

Botnets are compromised end-user computers that are controlled
by the botmaster through a command-and-control (C&C) server at
some DNS name. A sinkholed domain is a C&C server that has been
taken over by the authorities from the botmaster. Since end-user
computers cannot be de-infected, the sinkhole domain continues
to receive traffic. Typically, such traffic is discarded, but we were
given approval to use this traffic to evaluate cyclic domains.

Our sinkholed domain (bad-domain.nl) has two subdomains un-
der it ({a,b}.bad-domain.nl) that are still frequently queried, even
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Figure 8: Sinkhole experiment timeseries (10min bin)

after more than 8 years since it has been sinkholed. We can con-
figure these domains with a cycle to see how the botnet and the
recursives it uses react. We then compare the results to our Atlas
experiments. (We make no changes to the bots, nor cause any harm
to them. The only traffic they send is their ongoing DNS queries.)

Our experiment is divided into multiple phases, as shown in
Table 5: the Pre, Delegated, Cyclic dependent, TTL influence, and the
Delegation removed phases.

Pre phase: Before (and after) our experiment the sinkhole answers
DNS queries with “localhost” with a 1 h TTL, causing bots to talk
to themselves when searching for C&C. With this typical sinkhole
operation the bots do no harm to themselves or others.

Delegated phase: We next change the NS records of the sinkholed
domain to our experiment’s authoritative servers. We can now
observe bot queries to determine the baseline query traffic and
number of bots. Our servers continue to answer with the localhost
address, as in the Pre phase.

We run in Delegated for over 8 hours to ensure any cached DNS
records learn about this delegation. We see 344k queries from 29k
unique resolver IP addresses during this entire phase (Table 6). We
see 10k queries from ∼5k resolvers every 10minutes (Figure 8),
defining our baseline query rate.

Cyclic dependent phase: We next introduce a cyclic dependency
between our two domains by deploying cyclic NS records (auth.su
b2.essedarius.net ↔ auth.sub2.verfwinkel.net), at 08:48 UTC. This configu-
ration reproduces the setup that took place during .nz event (§3).

We leave this configuration active for 4 h, four times longer than
record’s TTL.

Traffic Growth: After adding the cyclic dependency, we see that,
around 11:00 UTC, the authoritative servers experience surge in
traffic, peaking at 1.2M queries, 120× the original query rate of 10k
queries per ten minutes. The new average query rate is 2581 queries
per second (q/s), up from 10.8 q/s, a 239× increase. This experiment
confirms large query amplification (239×) due to TsuNAME with a
population independent from RIPE Atlas.

In addition to growth in query rate, we see more unique resolvers
in Cyclic dependent phase. In Figure 8b, we see an average of 5k
unique resolver IPs in the Pre and Delegated Phases, and ∼9k at
11:00 UTC, almost twice as many. Prior work has seen similar use
of new recursives during DDoS attacks (Appendix F in [34, 35]). We
show here a similar diversity is discovered from cyclic dependencies
as clients or intermediate recursives try others when initial queries
timeout or fail. Analyzing the entire phase, we see that there were
33.9k active resolvers, from 29.2k in the Delegated phase (Table 6).

TTL influence phase: Next we evaluate the role of this TTL value,
by reducing the NS record TTL from 1 h to 1 s while keeping the
cyclic dependency in place (Table 6). TTL largely disables caching
in resolvers (most resolvers respect non-zero TTLs [34]).

A smaller TTL further increases in query volume, from an aver-
age of 2.5kq/s with a 1 h TTL to to 5.6kq/ with a 1 s TTL, as shown
in Table 6. Relative to the 10q/s baseline in the Delegated phase,
this is 526× the traffic. We speculate that this short TTL causes
more rapid use of new resolvers, making the problem even worse.

Delegation removed phase: Finally, we stop the experiment at
20:18 UTC, terminating our authoritative servers and reverting the
NS records back to those from the Pre phase. After this, all clients
send their queries to the original servers, which we do not monitor.
We cover its details in Appendix C.

4.2.1 Resolvers amplification factor: This experiment allows us
to estimate the amplification factor for each resolver: how many
queries does it send during Cyclic dependent phase compared to
Delegated phase. In total, we see ∼ 22k resolvers querying for A
records during both the Pre and Cyclic dependent phases, and ∼ 14k
for AAAA records.

Figure 9 shows the CDF of both A and AAAA traffic growth. We
see that most resolvers indeed send more queries during the Cyclic
dependent and TTL influence phases (comparing the median value
of AAAA records, a 1 s TTL results in 100× amplification, while
1 h TTL is only about 4×). For both A and AAAA records, roughly
20% of resolvers have at least a 100x growth (x>100) during Cyclic
dependent phase and a 40% during TTL influence phase. Finally,
while the amplification factor varies by 3 orders of magnitude, even
a few resolvers with large amplification (more than 10) can stress
authoritative servers.

4.2.2 Identifying problematic resolvers. Finally, we look for prob-
lematic resolvers in this data—the resolvers that sent too many
queries. Given we cannot control user query frequency, we are un-
able to simply use the IQR of received queries like with RIPE Atlas
(§4.1). Instead, we use the traffic growth observed by the matching
resolvers.

We start first by singling out resolvers with a normalized am-
plification factor of at least 100 – an arbitrarily chosen number.

auth.sub2.essedarius.net
auth.sub2.essedarius.net
auth.sub2.verfwinkel.net
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Parent Zone (bad-domain.nl) Child Zone (a.bad-domain.nl)
Phase A AAAA NS TTL A AAAA NS TTL
Pre 127.0.0.1 ::1 – 3600 – – – –

Delegated – – ns-414.awsdns-51.com 3600 127.0.0.1 ::1 3600
Cyclic1h – – ns-414.awsdns-51.com 3600 – – auth.sub2.essedarius.net 3600
Cyclic1s – – ns-414.awsdns-51.com 3600 – – auth.sub2.essedarius.net 1

Del. removed 127.0.0.1 ::1 – 3600 – – auth.sub2.essedarius.net 1
Child removed 127.0.0.1 ::1 – 3600 – – – –

Table 5: Sinkhole experiment: zone file for a.bad-domain.nl, at parent and child delegation

Delegated Cyclic1h Cyclic1s Del. removed
Queries 344222 37173567 45054434 27386057
Queries/s 10.8 2581.4 5688.6 1444.4

Resolvers 29280 33943 33679 18920
∩ Del. A – 22541 22239 18566
∩ Del.AAAA – 14125 14411 15696

ASes 2490 2620 2785 1228
Duration 8h48min 4h 2h12min 5h16min

Table 6: Phase classification and characteristics
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Figure 9: CDF resolvers by amplification factor

Out of the 22451 active resolvers during both the Pre and Cyclic
dependent phases, 2653 and 2076 resolvers sent at least 100x more
A and AAAA records respectively (Figure 9).

Figure 10 shows the matching resolvers and the total queries
sent for A queries (we show the AAAA queries in Appendix A) We
see that both the most aggressive and the most resolvers are from
Google: only Google sent more than 20k queries per resolver during
Cyclic dependent phase. However, we also see in Table 4 that 2652
resolvers from 127 ASes were also vulnerable to TsuNAME.

4.3 Longer cycles and CNAME cycles
Most of our experiment focuses on cycles of two NS records, but
there can be cycles of more NS records (A → B → C → A) and
cycles using CNAMEs. We carried out experiments on these cases.
We found multiple-hop NS cycles further increase the amplification
factor (possibly linearly), but CNAME cycles do not. Due to space
constraints, details are in Appendix D.

4.4 Finding Problematic Recursives
Events (§3) and experiments (§4.1 and §4.2) show the problem of
TsuNAME, but they treat the recursives as an opaque box. We next
open that box up to find problematic recursives.

To identify problematic resolverswewant to find one-hop clients—
cases where a user queries a recursive resolvers that queries our
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Authoritative Ripe Atlas
IPs 11931 IPs 7317

not querying $PID 4642 Private 2924
querying $PID 7289 Public 4393
> 1 $PID 1558
== 1 $PID 5731

Matching Resolver IPs 1256
Problematic Resolvers 574

intersection (∩) 4
Table 7: Singling out looping resolvers

authoritative servers. These clients allow us to identify the am-
plification from a single user query, and to demonstrate looping
recursives.

We walk authoritative queries back to clients by examining
queries from thousands of RIPE Atlas probes through their recur-
sive resolvers (Figure 4). We ask each RIPE Atlas probe to query our
new domain. (These queries are not affected by caching or other
users). We see 7,317 unique resolver IPs across 9,724 probes (Ta-
ble 7). Of these, 4,393 resolvers use routable IP addresses, and the
rest are in private networks [45], presumably behind a NAT.

At the authoritative servers, we see queries arrive from 11,931
unique IP addresses (Table 7). Some of these sources are shared by
multiple clients. To avoid inflating our query counts we identify
and discard shared recursive resolvers. We can distinguish unique
from shared resolvers since queries include the resolvers ID (each is
for $PID.sub.verfwinkel.net, where $PID is the Atlas probe’s ID).
We find 5,731 non-shared recursives, each serving a single Atlas
probe (== 1 $PID).
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Resolver Queries Median ∆t Duration
r1 34351 901 ms 3.17h
r2 2783 6095 ms 5.13h
r3 833 60821 ms 5.10h
r4 775 61680 ms 5.10h

Table 8: Confirmed looping resolvers

RIPE Atlas Side
# Time Query/Type Resolver
1 14:14:57 19817.sub.verfwinkel.net/A IP1
2 14:15:03 19817.sub.verfwinkel.net/A IP2
3 14:15:09 19817.sub.verfwinkel.net/A IP3

Authoritative Server Side from IP2
4 14:15:07 19817.sub.verfwinkel.net/A IP2
5 14:15:10 ns.sub.cachetest.net/A IP2
6 14:15:10 ns.sub.verfwinkel.net/A IP2

Remaining queries
Median ∆t Query/Type Total
901ms ns.sub.verfwinkel.net/A 17905
901ms ns.sub.cachetest.net/A 18169
Table 9: Query sequence for Probe 19817

We can now find one-hop clients (client to recursive to authori-
tative, without forwarders or multi-level recursives). We identify
one-hop clients as Atlas VPs where their local resolver’s IP address
matches an IP address seen in traffic to our authoritative servers—
the cells highlighted in Table 7. This process may miss recursive
resolvers that serve DNS traffic on multiple network interfaces. We
intersect these lists to identify 1,256 matching IP addresses.

We compare these recursives against our list of 574 problematic
resolvers (from controlled experiments §4.1). We find that 4 one-hop
clients use problematic resolvers. Table 8 lists these anonymized
recursive resolvers and shows how many queries and their query
interarrival rate from our prior experiment. We see that the most
prolific, r1, queried every second for more than 3 hours, while the
others queried every 6 or 60 s.

Resolver query history:We next examine query sequence of these
problematic recursives to understand when they start looping. We
begin with r1 from AS553 (BelWue, Germany), which sent 36k
queries. Table 9 shows its query history. First, at the Atlas side, we
see that this Atlas probe is configured with 3 different resolvers
(IP1–IP3, omitted for privacy), and it sends one query per resolver.
No other queries are issued from Atlas after that.

We see that these resolvers produce different results at the au-
thoritative side. IP1 sends only 9 queries to our servers, and IP3 sent
1 query only. But IP2, on the other hand, sends 36,075 queries! After
queries #5 and #6, this resolver repeats these queries every 900ms
for more than 3 h (Table 8). Even without new client queries, this
recursive resolver seems stuck in an infinite cycle. We contacted
this operator and they reported that this recursive ran Windows
2008R2 and was marked to be phased out.

We have shown that we can identify specific problematic re-
solvers, and proven that at least one specific resolver will cycle
indefinitely. While the operator is resolving this case, it shows
TsuNAME is a problem today. We examine r2 (Table 8) is in Appen-
dix H (omitted here due to space).

4.5 Revisiting Google Public DNS
We have seen that Google Public DNS was responsible for most
queries during both the .nz event (§3) and our experiments (§4).
Given how much traffic they handle, their role is not surprising.
Oddly, however, they show diverse behavior: some GDNS resolvers
seem to loop while others do not (Figure 3). We reached out to
them and other operators (§6), following responsible disclosure
guidelines. Our interaction with Google helped us understand how
the different components of the DNS system come together to make
TsuNAME amplification problematic.

Based on our input, Google engineers reproduced the problem.
They could not reproduce continuous looping, but did show an am-
plification factor of 10 from retries. While a powerful amplification,
this behavior conforms to limitations required by [25, 27].

But if GDNS does not loop by itself, why does it contribute large
traffic volumes during the .nz event and in our experiments? Google
engineers found it was a combination of two factors: first, retries oc-
cur outside Google’s recursive resolvers: GDNS clients themselves
can retry (for example, R1b in Figure 4). Secondly, Google’s recur-
sive resolver system did not cache the cyclic failure. Thus every
new external query would force Google’s resolvers to re-prove the
cycle, amplifying each external query by ten. This interaction of
DNS system components results in large traffic volumes.

This interaction also explains why we see only some Google
IP addresses during the .nz event (Figure 3): the clients retrying
queries produced much more traffic than those where clients do
minimal retries.

Google then fixed GDNS by implemeting negative caching of
cyclic dependent records. After Google reported their fix to us, we
confirmed they have mitigated the they TsuNAME vulnerability
in their service. When we repeated our experiments (§4.1 and Ap-
pendix B), wee see a much lower query volume (Appendix E). We
also thank Google for a bug bounty for reporting this problem; we
donated it to Wikipedia.

5 DETECTING CYCLIC DEPENDENCIES
TsuNAME attacks are intrinsically asymmetrical: the victims (au-
thoritative server operators) are different companies than the ampli-
fiers (vulnerable resolver operators). We discuss this threat model
in greater detail in Appendix F.

Next consider the side of the authoritative server operator, and
work on preventing TsuNAME attacks by detecting and removing
cyclic dependencies from their zones. We present CycleHunter, a
tool that we developed that proactively detects cyclic dependencies
in zone files, allowing operators to identify them before any vul-
nerable resolvers do. We make CycleHunter publicly available at
http://tsuname.io and [10].

CycleHunter uses active DNS measurements to detect cyclic
dependencies, given many NS records in a DNS zone are typically
out-of-zone (out-of-bailiwick) [55]. As such, it requires external
zone knowledge which can only be done if an operator has every
necessary zone file in possession (a condition we do not assume).

5.1 CycleHunter
CycleHunter begins with a bulk copy of the zone, processing it
(Figure 11):

http://tsuname.io
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Figure 11: CycleHunter workflow

1. Zone Parser : the first module reads a DNS zone file, such as the
.org zone and extracts records of interest. Zone files contain both
delegations and other data records (A, AAAA, NS, SOA, DNSSEC,
and so forth). The Zone Parser module extracts the NS records into
the “NS List” (Figure 11). CycleHunter’s goal is to determinewhich
of these NS records are cyclically dependent, and what domain
names in the zone file use them. Given that many domain names
use the same authoritative servers [3, 24], this step significantly
reduces the search space. For instance, the .com zone has 151M
domain names, but only 2.19M unique NS records (Table 10).

2. Resolve NS list: this module tries to resolve every NS record
in the NS list. CycleHunter uses the local computer’s configured
resolver (BIND 9 in our experiments). CycleHunter retrieves the
start-of-authority (SOA) record [27] required of each zone, for each
NS in the NS list. Successful resolution of the domain’s SOA proves
that domain is resolvable and is not cyclically dependent. We are in-
terested in domains that fail this test, as these reveal which domains
have cyclically dependent NS records that are not resolvable.

3. Find Cycle: Since NS records fail for cycles, but also other
reasons (missing data, missing or “lame” servers [26], packet loss,
etc.), we next identify cycles.

To detect cycles, it first records each NS’s Authority informa-
tion [27] (an Authority object in the NS list). For example, suppose
that ns0.wikimedia.org was in the NS list (Figure 12). This module
will create an Authority object for this NS record, which will include
its parent zone wikimedia.org and its NS records (wikimedia.org:
[ns1,ns2].example,com). It does that by querying the parent au-
thoritative servers instead of the unresponsive, possibly cyclic, NS
records. For the ns0.wikimedia.org example, it retrieves the au-
thority data for wikimedia.org directly from .org’s authoritative
servers.

To detect cycles, we examine each NS record in the NS list,
identifying the parent zone and its NS records. We get this infor-
mation from the parent zone of the NS record. For example, if
ns0.wikimedia.org is in the NS list, we would check NS records for
wikimedia.org, perhaps finding ns1.example.com and ns2.example
.com. This query to the parent often succeeds even if the ns0.wiki
media.org is cyclic.

Then the Find Cycle module determines what zones this Au-
thority zone depends on by analyzing its own NS records. In our
fictional Figure 12 example, we see that wikimedia.org depends
on example.com so we also need to create an authority object for
example.com and determine what zones it depends on. The last step
consists of comparing these two authority objects: the example.com

ns0.wikimedia.org
(unresolvable

NS)

wikimedia.org:
ns1.example.com
ns2.example.com

example.com:
ns1.wikimedia.org
ns2.wikimedia.org

Figure 12: CycleHunter Cyclic Dependency Detector

zone Size NSSet Cyclic Affect. Date
.com 151445463 2199652 21 1233 2020-12-05
.net 13444518 708837 6 17 2020-12-10
.org 10797217 540819 13 121 2020-12-10
.nl 6072961 79619 4 64 2020-12-03
.se 1655434 27540 0 0 2020-12-10
.nz 718254 35738 0 0 2021-01-11
.nu 274018 10519 0 0 2020-12-10
Root 1506 115 0 0 2020-12-04
Total 184409371 3602839 44 1435

Table 10: CycleHunter: evaluated DNS Zones

NS records that depend on wikimedia.org, which in turn depends on
example.com, confirming a cyclic dependency between wikimedia.org

and example.com.
Note that although we start with one zone, we track all records

in other zones that are referenced.
CycleHunter can also detect other dependency types. For exam-

ple, if the wikimedia.org zone has an in-zone NS record (ns3.wikime
dia.org), but with an unresponsive or lame or missing glue record,
CycleHunter will classify this zone as cyclic dependent with an
in-zone NS record (“fullDepWithInZone”).

Zone Matcher: the last CycleHunter module identifies which
domain names in the DNS zone are requiring cyclic dependent NS
records identified by the Find Cycle module. For example, ns0.wi
kipedia.org could be the authoritative server for both dog.org and
cat.org.

Performance: CycleHunter is a concurrent and asynchronous
application that allows a user configurable number of threads/work-
ers. However, the largest performance bottleneck is in the resolver
used in Step 2. As such, we recommend operators use a high perfor-
mance resolver for faster results. To ensure accuracy, CycleHunter
should always start after the resolver’s cache has been cleared in
order to retrieve the most up to date DNS records. With 8 CPU
cores we can evaluate 10M domains per hour, and this work can
parallelizes with more cores.

Limitations: Currently CycleHunter detects cycles of length
two. We can detect longer cycles (see §4.3) and plan to extend it to
cover them. Fortunately, mitigations at other stages (see §2) help
for cycles that are not discovered.

5.2 Evaluation of DNS Zones
We use CycleHunter to evaluate the DNS Root zone and 7 TLDs
which are either public [20, 21] or available via ICANN CZDS [19].
Table 10 shows the number of domains (size) and the total number
of NS records (NSset) per zone.

ns2.example.com
ns2.example.com
ns0.wikimedia.org
ns0.wikimedia.org
ns3.wikimedia.org
ns3.wikimedia.org
ns0.wikipedia.org
ns0.wikipedia.org
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Figure 13: Query timeseries for .nl domain with cyclic de-
pendency found with CycleHunter

From the evaluated 184M child domains, we obtained 3.6M dis-
tinct NS records. After processing, CycleHunter finds 44 cyclic-
dependent NS records (“Cyclic” in Table 10). We manually verified
each of these cases, confirming the cycles. In total, we found 1435
unreachable domain names employing cyclic dependent domains.

This fairly a small number of domains most likely suffer simply
configuration errors that render them unresolvable. However, as
we cover in Appendix F, adversaries could exploit the TsuNAME
vulnerability to incur damage.

5.2.1 Analyzing the .nl Cyclic Domains: The 6M domains in
.nl use 79k NS records (Table 10). CycleHunter identified 6 cyclic
dependent NSes in the .nl zone: 3 were .nl domain names, and
2 were within .com and 1 within .net. Final analysis showed 64
domains that employed these cyclic 6 NS records.

Of the 3 .nl domain names, two were our test domains. These
were not publicized and receive no more than 1k queries daily. The
remaining domain bugged-example.nl, however, is an old domain,
registered in 2004.

With access to .nl authoritative DNS traffic, we use the open-
source DNS analytics package ENTRADA [54, 64] to determine
the daily queries this cyclic domain received. Figure 13 shows the
results. Very few queries were seen until mid-June (<300 daily).
However, on May 19, the domain owner changed the NS records of
the domain to be cyclic dependent – probably due to human error
as was the case of .nz (§3). After June 4th, we observe a significant
amount more queries: 2.2M, reaching 27M on June 8th. After that
point, we see three intervals of large query volumes, each averaging
42M daily queries to this domain. The first interval (July 3rd– July
13th), lasts for 10 days, the second for over a month (Sep. 13th – Oct.
15th), and the last interval covers 43 days (Oct. 21st – Dec. 3rd).

Figure 13 shows also that most of these queries come from
Google. To fix that, we notified the domain owner on Dec. 4th,
and they quickly fixed their NS settings, which after that, the num-
ber of queries reduced to 300 daily (we did this analysis prior to
GDNS being – §4.5).

Simply having cyclic dependencies alone does not trigger large
volume of queries – our two test cyclic domains have not expe-
rienced large query volumes – this only happens in combination
with vulnerable resolvers.

5.3 Resolver software evaluation
Google repaired GDNS, significantly reducing the potential for
harm. However, as shown in Table 4, Google was not the only
affected resolver operator.

To determine how vulnerable current resolver software is to
TsuNAME, we create two tests: 1. determine if a resolver loops,
given a cyclic dependency (like r1 in §4.4) and 2. if the resolver
caches these loops Appendix I).

With a test zone with cyclic dependency (§4), we evaluate popu-
lar DNS resolvers on an AWS EC2 (Fra) VM: Unbound (v 1.6.7) [36],
BIND (v 9.11.3) [22], and KnotDNS (v 5.1.3) [11]. We find that none
of these loop in the presence of cyclic dependent domains, and
hence are not vulnerable.

We also evaluatedmultiple public resolvers, finding that Quad9 [43]
and Quad1 [1] were not vulnerable. However, we did find that
Cisco’s OpenDNS [38] was vulnerable and notified the operators.
They fixed the issue on 2021-04-13.

6 RESPONSIBLE DISCLOSURE
Wewish to protect zone operators fromDDoS attacks using TsuNAME.
The problem can be solved by modifying and deploying recursive
resolvers (§2), but it takes considerable time. However, operators
of an authoritative DNS service can at least protect their servers by
ensuring that no sub-domain’s of theirs have cyclic dependencies.
In the long run, both resolver and domain fixes should be in place,
since either new recursive software or new domains with cyclic
dependencies can always recreate the problem.

To address these problems, we notified and worked with Google,
whose public DNS service represents the largest recursive resolver
traffic we see. After notification, they solved this problem in their
GDNS (§4.5). We followed best practices for these disclosures, allow-
ing operators at least 90 days to address problems. This threshold is
consistent with cert.org’s 45-day notification policy [9] and Google
Project Zero’s 90-day policy [16]. We also notified Cisco OpenDNS,
another large public DNS provider, which also fixed their resolver
software.

In addition to Google we also notified operators of the other
ASes that generated the greatest amount of recursive traffic in our
experiments from §4. Three of these ten responded to us. Of those,
two reported running old recursive resolver software. One was
using a PowerDNS resolver (3.6.2-2, from 2014 [41]), and the other
was using Windows 2008R2 (§4.4). Both planned to update these
resolvers.

6.1 Private and Public Disclosure
We made early, limited disclosure to specific operators, and broader
but limited disclosure to the operator and vendor community in
February 2021 [29].

Developer reaction. Upon our private disclose, Google and Cisco
have fixed their public DNS software. Moreover, the developers of
three popular resolver software – BIND, Unbound, and PowerDNS
have released public statements about how theymitigate or planned
to mitigate TsuNAME– with PowerDNS and Unbound explicitly
deploying negative caching of cyclic dependent records [6, 37, 42].

Operator reaction: After our February disclosure, two ccTLD
operators reported to us that they experienced TsuNAME events.
A European ccTLD kindly shared their experience with us. Around
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Figure 14: TsuNAME event at an Anonymous EU-based
ccTLD operator. Each color represents the traffic to one of
the ccTLD authoritative servers.

19:00 UTC one day in 2019, two domains in their zones were mis-
configured with cyclic dependencies. Given these domain names
were particularly popular in their country, they created 10x their
normal traffic. Figure 14 shows a timeseries of queries from this
event (y axis anonymized by the operator, each color denoting one
authoritative server). The ccTLD operator contacted the domain
owner, who fixed it around 11:00 UTC on the following day. Simi-
larly to the .nz event, after fixing an immediate drop is seen in the
traffic.

A second large anycast operator confirmed that Google had at
least on one occasion sent a surge of queries to their authoritative
servers, following a cyclic dependency misconfiguration. Their
experience wasworse than ours: they received a surge in UDP traffic,
to which they responded with response rate limiting (RRL [56]).
However, because these queries were from legitimate clients (not
spoofed), the clients then retried with TCP, further amplifying the
problem.

Public Disclosure: On 2021-05-06 we public disclosed TsuNAME
with a website, security advisory, and technical report. This paper
documents the problem in more detail and enables peer review of
the analysis.

7 ETHICS AND PRIVACY
Our paper poses three ethical concerns: avoiding negative conse-
quences in our evaluation, the availability of our collected data, and
proper disclosure to impacted operators.

Our evaluation to identify, reproduce, and confirm solutions to
TsuNAME placed traffic on both networks and servers. We designed
our experiments to minimize this impact. First, our experiments
in §4 use third-level domain names, isolating the amplification
to authoritative servers under our control. This step ensures that
the authoritative servers for TLDs are not affected by the extra
traffic from our experiments. The .nz event (§3) shows that indi-
vidual resolvers send safe query volumes (fewer than 10 q/s per
resolver), supporting that our experiments will not harm end users
or their resolvers. In addition, we monitored the experiment for
potential surges. Aggregate traffic during the experiment can harm

the authoritative servers, but we monitor and can manage any self-
inflicted threat. We see reached at most 5.6k q/s in the sinkhole
experiment, well within our capacity.

Secondly, we limit the duration of these experiments (at most
11 hours) to reduce the traffic generated from the tested recursive
resolvers to a limited period of repeated queries. Our goal is to re-
produce the problem, confirm which resolvers are affected and how
they behave – not to evaluate how long they will loop. Finally, we
design our experiment to weigh experiment benefit against costs
(value-sensitive design [14, 17]). Our benefits are understanding
potential harm, allowing us to notify operators, avert future prob-
lems by removing the vulnerability. These benefits greatly exceed
the carefully managed, modest experimental risks. Changes made
by Google and OpenDNS show evidence of our success.

Our sinkhole experiment (§4.2) temporarily introduced cyclic de-
pendencies in the domains, preventing bots from receiving answers
related to their C&C sinkholed domain. (We obtained permission
from the operator to run this experiment). This change does not
impact bots or regular users, but it may cause vulnerable resolvers
to query more often than normal, but no more than 1 q/s – a very
safe value that is very unlikely to disrupt any resolver’s operation.
Given our goal is to evaluate the extent of vulnerable resolvers, we
reverted the domain to its original configuration after the experi-
ment ended.

Although we often release datasets publicly, in this case we are
unable to do so. Disclosure of IP address of vulnerable resolvers and
cyclic zones could enable abuse by others, and provide little lasting
benefit if problems are resolved. We have provided information
privately to operators and developers, with at least 60 days prior to
the public disclosure (Appendix G).

8 RELATEDWORK
DNS misconfiguration: There have long been reports of many types
of DNS misconfiguration [2, 8, 12, 39, 60]. Our work focuses on
the problem of cyclic dependencies, first described as loops on
RFC1536 [25], and the term was coined by Pappas et al. [39]. Our
work goes beyond that work to show how this misconfiguration
interacts in real networks resulting in some recursive resolvers
greatly amplifying traffic, and we provide the first scan for these
cyclic dependencies.

DDoS attacks against DNS: Given their role in DNS resolution,
loss of authoritative DNS servers due to denial-of-service can have
catastrophic consequences. The Mirai Attack against DYN harmed
many prominent web services due to loss of DNS [40]. The root
DNS has suffered a number of DDoS attacks [32] although no prior
attack has affected enough root DNS instances to cause a user-
visible outage, in part due to heavy caching [33].

DDoS attacks using DNS: The DNS protocol itself has been ex-
ploited to carry out attacks on others.With spoofed queries, DNSSEC
provides a vector for attack amplification [23, 59]. Long CNAME
chains have also been exploited to carry amplification attacks
against authoritative servers [7]: by carefully crafting CNAME
chains where each element points to the same authoritative servers,
an attacker can amplify query volumes. We analyze short CNAME
loops and show that resolvers can detect them.

Shared infrastructure and collateral damage: Previous studies have
shown where shared infrastructure in DNS [3, 24] has increased
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the odds of collateral damage: once a zone is attacked, other zones
hosted in the same infrastructure may suffer together – for example,
this happened to .nlwhen parts of the Root DNS was attacked [32].
Similar behavior was observed when the Dyn DNS provider was
attacked and multiple zones hosted by it had connectivity prob-
lems [40]. Using the DNS to protect origin servers behind CDNs has
been thwarted by simultaneous connecting through IP addresses
only and by using carefully crafted URLs [58].

Recursive and Public Resolvers: Studies have examined the re-
cursive DNS resolution infrastructure, and inferred the internals
of Google’s public DNS service, both as a subject of study [53],
to understand end-user behavior [13], and to better understand
caches [44]. Google DNS has been found to be one of the most
popular public DNS resolvers [30]. In the same study, the authors
showed one of the benefits of centralization: when Google adopted
the privacy protecting query-name minimization technique, it ben-
efited many users at the same time. Our study shows another nega-
tive side of this coin, showing that when something breaks in large
DNS providers, it can be exploited to cause significant harm.

9 CONCLUSIONS
The risk of DNS cycles has been documented for more than 30 years,
but this threat has been underestimated. Large traffic increases at
.nz (§3) prompted us to carefully investigate this problem through
controlled experiments (§4). Although the exact amplification factor
varies, we showed factors ranging from 120× and 526×, explaining
two weeks of 50% growth at .nz and a 10× increase in a European
ccTLD.

Our contribution is to document the cause and threat of the
problem (§2), and to disclose this information to the vendor and
operation community (§6). We also provide a tool to detect existing
cyclic dependencies (§5). We hope that these steps will defuse this
problem, and we are happy that multiple vendors have confirmed
current software mitigates the problem (and identified old versions
at risk), and important operators such as Google Public DNS have
taken steps to manage the challenge.
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A EXTRA TABLE AND FIGURES
Figure 15 shows the AAAA queries for Google during the .nz event.

Figure 16 show a timeseries of daily queries per AS during the
.nz event.

Figure 17 shows the resolvers with at least 100x traffic growth,
for AAAA queries, in the sinkhole experiment.

Table 11 shows the list of top ASes during the .nz event.

B INFLUENCE OF RECURRENT QUERIES
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Figure 17: Resolvers with at least 100x traffic growth (AAAA
queries)

AS Number AS name Country
15169 Google US
23969 TOT Public Company Limited Thailand
10013 FreeBit Japan
36692 Cisco OpenDNS US
39289 MediaSeti Russia
3561 CENTURYLINK US
3452 University of Alabama US
16509 Amazon, Inc US
11233 Gorge Networks US
45142 Loxley Wireless Thailand
200050 ITSVision France
30844 Liquid Telecom UK
15267 702 communications US

Table 11: List of top ASes per volume of queries during ex-
periments and .nz event.

dependent, and that roughly 574 resolvers (out of 11k, thus 5.1%)
are problematic.

To determine the influence of recurrent queries – similar to
what happened with TsuNAME– we now set up an experiment in
which we configure VPs to repeat queries every 10mins, as shown

 0

 50

 100

 150

 200

12
:00

16
:00

20
:00

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

00
:00

04
:00

08
:00

Resolvers in Loop Off.

Q
ue

rie
s 

(k
)

Time (UTC) -- 2020-06-09

cachetest.net
verfwinkel.net

Atlas active

(a) Queries

 0

 2000

 4000

 6000

 8000

 10000

16
:00

20
:00

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

00
:00

04
:00

08
:00

Resolvers in Loop Off.

U
ni

qu
e 

Re
so

lve
rs

Time (UTC) -- 2020-06-09

cachetest.net
verfwinkel.net

Atlas active

(b) Resolvers

Figure 18: Recurrent: queries and unique resolvers time-
series (5min bins)

in Table 3 (recurrent column). To avoid warming up caches, we
configure Atlas probes to query unique query names, with random
values (R in qname).

On the client side, we see 13k VPs in Table 3, which issued ∼727k
queries for this measurement. Most of them were answered as
SERVFAIL, similar to the one-off measurement.

On the authoritative server side (ns1 and ns2 in Table 3), we see a
different story: altogether, the authoritative servers received ∼70M
queries over the period – an amplification factor of 99x compared
to the queries sent by Atlas VPs.

Influence of recurrent queries: Figure 18 shows the timeseries
of both queries and unique resolvers reaching our authoritative
servers. We see a large oscillation during the period in which At-
las is active – anywhere from 1k to 8k are active at any moment
(Figure 18b). The reasons for that are twofold: some resolvers are
indeed in loop here, but also our is configure to send new queries
every 30min (Table 3). Similarly to §4.1, once Atlas stops sending
queries, we still see a portion of resolvers staying in loop. In fact, for
this measurement, we find 1423 resolvers from 192 ASes (Table 4)
that are in the loop mode.

Figure 19 shows the top 10 ASes sending queries our authori-
tative servers when atlas stopped, i.e., they should not have sent
any queries. We see that Google did roughly 60% of the queries
again, but similarly to the one-off measurement, other ASes have
the same issue.
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Figure 19: Recurrent experiment: queries per AS with prob-
lematic resolvers
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Time in-between queries: Figure 20 shows the IQR and queries for
the top 50 resolvers in terms of query volume, that send A records
queries for a server for a qname in cyclic dependency. Compared
with the one-off case (Figure 7), we see a very similar pattern,
except for the volume of queries, which is larger, given that the
measurement was kept running for longer than the one-off.

The conclusion we can draw from this experiment is that more
client incoming queries will amplify even further the number of
queries experienced by authoritative servers.

C STOPPING THE SINKHOLE EXPERIMENT
We stop the sinkhole experiment in two steps: We do this in two
steps: first, we return these domains to their original, sinkholed
NS records – as in the Pre phase. We do that by changing the NS
records in the parent DNS zone (.nl). In theory, this should redirect
all clients to the newly configured NS records. We see that most
of the resolvers do that, but we still keep on receiving queries on
the “old” server (AWS route 53) – the latter are referred to as child-
centric resolvers [55], as they trust the information of the child
zone delegation over the parent. We fully stop the experiment at
20:18 UTC, by removing the zones from AWS Route 53 (Delegation
removed phase). After that point, all clients of this domain query
the NS records of the Pre phase, which we do not monitor.

D LONGER AND CNAME CYCLES
In this section we investigate other types of loops, namely longer
cycles and CNAME-based loops.
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Figure 21: TripleDep measurement: Queries and unique re-
solvers querying authoritative servers (5min bins)

D.1 Triple cyclic dependency
First, in measurement TripleDep (Table 3), we configure a triple
cyclic dependency (Table 12) to determine if resolvers would also
be vulnerable it, and what would be the impact compared to regular
cyclic dependencies.

Similarly to the New Domain experiment, we only configure the
probes to send 1 query per vantage point. We see in in Figure 21
the timeseries of queries and resolvers we see. Compared with the
New domain experiment (Figure 5), we see that the query rates
reduce very litte after Atlas stop sending queries (> 8:45). We see,
however, that only a fraction of resolvers remain active after Atlas
stops sending queries (Figure 21b).

Figure 22 shows the top 10 ASes for this experiment. We see that
it is similar to the ASes from the NewDomain Experiment (Figure 6)
– except for the fact that GDNS (AS15169) has been fixed in the
meantime, reducing the number of queries.

Figure 21 shows the timeseries results. We see that, differenlty
from the normal cyclic dependent domains, a triple cyclic depen-
dency query volume does not reduce as fast as the previous ones.
So making longer cycles will make the problem even worse.

D.2 CNAME cycles
Wealso ran an experimentwith loops donewith CNAME records [28],
which are like ‘aliases’ for a domain. We configured the experi-
ment CNAME in Table 3, in which we configure cyclic CNAMES:
minuano.essedarius.net ↔ tramontana.verfwinkel.net. Figure 23
shows the timeseries of queries. We see that most resolvers detect
the cycle, and do not begin to loop.
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Zones
Zone jupiter.essedarius.net mars.verfwinkel.net vulcan.cachetest.nl

NS ns1.mars.verfwinkel.net ns1.vulcan.cachetest.nl ns1.jupiter.essedarius.net

TTL 1s 1s 1s
Table 12: Triple cyclic dependency configuration
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Figure 22: Top 10 ASes for TripleDep experiment
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Figure 23: CNAME measurement: Queries and unique re-
solvers querying authoritative servers (5min bins)

E IMPACT OF GOOGLE PUBLIC DNS
MITIGATION

We worked together with Google in helping to understand the
CycleHunter vulnerability. We determine that Google would not
loop by itself, it was its client population that would. Given Google
did not cache cyclic dependent records, queries from looping clients
were amplified and sent to authoritative servers.

Zones
platypus.essedarius.net liger.verfwinkel.net

NS ns1.liger.verfwinkel.net ns3.platypus.essedarius.net

TTL 60s 60s
Table 13: Cyclic dependency for new one-off measurement.

Then, on Feb. 3rd, 2021, Google mitigated this vulnerability on
their Public DNS services, but implementing a cyclic dependent
detector and caching such records, so once it was cached, it would
not pass along any client queries – blocking the effects of looping
downstream resolvers.

In this section, we reproduce the measurements made with RIPE
Atlas to determine the impact of Google’s mitigation.

E.1 Repeating lower-bound experiment
In §4.1, we configure ∼ 10k Atlas probes to send 1 query only to
each of their local resolvers, in order to measure the lower-bound of
amplification. In this section, we repeat that experiment in order to
determine howmuch of a problem is stil is after Google’s mitigation.

Table 13 shows the cyclic dependency we configured – third
level domains not used before. We delete the record on Wed 10 Feb
2021 08:30 UTC, after keeping the cyclic dependency active for 12h
and 30min.

Figure 24 shows the results. We see that altogether, after no
more user queries, the authoritative servers receiving roughly 88k
queries/5min combined (both zones, in Figure 24a). Previously, this
value in Figure 5 was around 135k queries/5min. That is a 35%
reduction in the total query volume. We also found 1560 problem-
atic resolvers (Figure 24b), which are unique IP addresses sending
queries after the initial round of queries from the Atlas probes –
resolvers in the Cyclic dependent phase. This number is, however,
larger than the one from Figure 5 – but they generate fewer queries.

Table 14 shows the details of this measurement. We see that
18.5k VPs sent 18.6k queries, which resulted in 12.3M queries at the
authoritative server, in the 12.5h that this measurement lasted.

Figure 25 show the top10 ASes for this experiment. Compared
with before the mitigation (Figure 6), Google significantly reduce
its volume of queries, from roughly 4.5M to 400k (90%), even if this
measurement lasted for 12.5h instead of 6.

E.2 Repeating recurrent queries measurement
Next, we set out to repeat the measurement with recurrent queries
from Appendix B, after Google’s mitigation. Table 15 shows the
cyclically dependent zones we configured.

Figure 26 shows the timeseries for this experiment. We see in
Figure 26a that when Atlas is active, each zone authoritative servers
receives roughly 90k queries/5min. That is already fewer queries
than Figure 18a, in which it peaked to almost 150k queries/5min.
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Figure 24: Ripe Atlas: Queries and unique resolvers query-
ing authoritative servers (5min bins)

Measurement One-Off-AfterGoogle
Frequency One-off
Qname $P-$r.platypus.essedarius.net.

Query Type A
Date 2021-02-09
Duration 12,5h

Client Side
Atlas Probes 9594
VPs 18539
Queries 18655
Responses 17051

SERVFAIL 13054
Timeout 3865
REFUSED 100
FORMERR 10
NOERROR 22
NXDOMAIN 32

Authoritative Server Side
Querying IPs 14657
ASes 2581
Queries 12386591
Responses 12386591

Table 14: TsuNAME Emulation Experiments after Google’s
mitigation. Datasets: [46].
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Figure 25: One-off-AfterGoogle: top 10 ASes by query vol-
ume with problematic resolvers

Zones
gioia.essedarius.net infinita.verfwinkel.net

NS ns3.infinita.verfwinkel.net ns5.gioia.essedarius.net

TTL 60s 60s
Table 15: Cyclic dependency for new one-off measurement.

Measurement Recurrent-AfterGoogle
Frequency One-off
Qname $P-$r.gioia.essedarius.net.

Query Type A
Date 2021-02-12
Duration 16h

Client Side
Atlas Probes 9962
VPs 17884
Queries 451997
Responses 451997

SERVFAIL 446941
Timeout 0
REFUSED 3456
FORMERR 604
NOERROR 816
NXDOMAIN 180

Authoritative Server Side
Querying IPs 21865
ASes 2560
Queries 21257464
Responses 21257464

Table 16: TsuNAME Recurrent Experiments after Google’s
mitigation. Datasets: [46].

When Atlas stops sending queries, the authoritative servers receive
roughly 50k queries/5min, also fewer than previously (∼75k).

We see that Google now is the 8th position in Figure 27, send-
ing 430k queries out of the 21M – 2.02% of the total, as shown in
Table 16.

F THREAT MODEL
The TsuNAME threat model involves using DNS reflection to carry
out a denial-of-service attack. Instead of attacking these servers
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Figure 26: Ripe Atlas: Queries and unique resolvers query-
ing authoritative servers (5min bins)
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Figure 27: RecurrentAfterGoogle: top 10 ASes by query vol-
ume with problematic resolvers

directly, the attack could use cyclic dependent domains and vul-
nerable resolvers to keep a continuous stream of queries to the
designated targets. None of our experiments fully exploited this
possibility for ethical reasons; next we discuss how a well motivated
could attack could as well do it.

For this to happen, an attacker needs (i) to have domains under a
given zone (or take control over them, e.g., by stealing registrant or
registrar credentials), (ii) misconfigure them with cyclic dependent
NS records, and (iii) induce vulnerable resolvers to carry out queries.

The first and second part are not difficult – most TLDs such as
.org and .es have an open registration policy, so anyone can register
domains and misconfigure them. For example, say an attacker has
500 .fr and 500 .ca domain names under its disposable: it could

Date Type Group
2021-02-05 Private Disclosure OARC34
2021-02-22 Private Disclosure APTLD
2021-02-23 Private Disclosure CENTR
2021-03-04 Private Disclosure LACTLD

2021-02-18–2021-05-05 Private Disclosure Private
2021-05-06 Public Disclosure OARC35
2021-05-06 Public Disclosure https://tsuname.io
Table 17: TsuNAME disclosure timeline

configure each of them with NS records pointing to each other, as
Figure 12.

The last step consists in inducing vulnerable resolvers to query
for these domains, so they can enter start looping and unleash a
large volume of queries. It will be the parent authoritative servers
of the cyclic NS records that will be receiving all the queries (in
this case, .ca and .fr authoritative servers).

The last step involves in finding vulnerable resolvers – our ex-
periments show that there are 4k resolves from 261 ASes vulnerable
to TsuNAME, but that is a lower-bound estimative, given we have
not covered most resolvers on the Internet (we were limited by the
view of our vantage points). Luckily, Google has fixed GDNS after
our notification, but there are still other vulnerable resolvers out
there, including OpenDNS. One could only think of the possible
damage that can be done if an attacker decides to employ a large
botnet to send frequent queries, such as the Mirai botnet [5].

Alternatively, hijacking only one popular domain and miscon-
figuring its NS records would also suffice, as in the case with the
anonymous European ccTLD (Figure 14). In this way, it is likely that
vulnerable resolvers would be automatically found by the regular
stream of user queries.

Once resolvers start looping, the effect on the authoritative
servers will depend on the attack size versus the authoritative
servers’s capacity, and there is a large variation among TLDs when
it comes to capacity, given there is large variation in the number of
authoritative servers and anycast instances per ccTLD.

Most TLDs are likely to suffer at least partial unavailability if
faced with 100s of thousands of queries per second. Once down,
the consequences can be catastrophic: in case of country-code TLD,
most official services, banks, online shopping and others would
become unreachable.

Collateral damage: an attack against a particular TLD may have
impact a series of others, given they may share parts of the same in-
frastructure [3, 24], by using the same authoritative DNS providers.
When Dyn DNS was attacked, multiple DNS zones were affected.
When some of the Root DNS servers were attack in 2015 [50], parts
of the Netherlands’ .nl ccTLD was also affected [32].

G PRIVATE AND PUBLIC DISCLOSURE
TIMELINE

Table 17 shows the dates of the public and private disclosures we
performed.

H ANOTHER LOOPING PROBE

https://indico.dns-oarc.net/event/37/contributions/821/ 
https://indico.dns-oarc.net/event/38/contributions/849/
https://tsuname.io


IMC ’21, November 2–4, 2021, Virtual Event, USA G. C. M. Moura et al.

RIPE Atlas Side
# Time Query/Type Resolver
1 14:14:57 52196.sub.verfwinkel.net/A 192.168.88.1
2 14:15:01 52196.sub.verfwinkel.net/A 208.67.222.123
3 14:15:02 52196.sub.verfwinkel.net/A 208.67.220.123

Authoritative Server Side
4 14:15:11 52196.sub.verfwinkel.net/A IP4
5 14:15:11 ns.sub.cachetest.net/A IP4
6 14:15:13 ns.sub.verfwinkel.net/A IP4
7 14:15:14 ns.sub.verfwinkel.net/A IP4
8 14:15:14 ns.sub.verfwinkel.net/A IP4
9 14:15:14 52196.sub.verfwinkel.net/A IP4

Remaining queries
Median ∆t Query/Type Total

37ms ns.sub.verfwinkel.net/A 169462
36ms ns.sub.cachetest.net/A 169871

Table 18: Query sequence for Probe 52196 during Low bound
measurement

Consider probe 52916, from the new domain measurement. Ta-
ble 18 shows the query history for this probe. At the Atlas side,
we see that this probe has sent 3 queries – one per resolver it was
configured with. The first query goes to a private IP address, likely
a local resolver. Queries 2 and 3 go to OpenDNS, Cisco’s public
resolver service.

At the authoritative server side, however, we see queries from
only one IP address (anonymized as IPv4), which belongs to the the
same AS number as the probe (AS15267). Query #4 it is the first
query we see on the authoritative server related to this probe, so
we map this IP to the probe (as in §4.4). After that, it asks for the A
records of the authoritative servers, and it asks again at 14:15:14
for the 52196.sub.verfwinkel.net/A domain.

Then, the resolver begins to loop: it sends 169k queries for each
dependent NS record (as queries #5 and #6), every 37ms, even in the
absence of new Ripe Atlas queries. Given this probe use two Open
DNS resolvers and a private a private IP address space, we do know
if the looping occurs at this private resolver, if it is a forwarder,
or at the last level resolver (Figure 4). We tried to identify this
local resolver by issuing chaos TXT queries to determine their
software version [63], but this feature was not implemented (see
measurement probe52196 in [46]). Still, the effect is send a large
volume of queries to our authoritative servers.

I RESOLVERS DEV/OPS RECOMMENDATIONS
To mitigate the traffic surge from resolvers to authoritative servers
caused by the TsuNAME vulnerability, resolver developers MUST
instrument their code to both detect cyclically dependent NS records
(so loops can be avoided), and cache them likewise (so no further
user queries generate new queries to the targeted authoritative
servers).

For example, in the Listing 1 and Listing 2 examples, that would
involve in detecting that #3 delegation NSes are unresolvable, and
caching it as that (possibly as SERVFAIL [27]). Then, any subsequent
queries to these delegations will notice that there is no resolvable

NS record for this zone, and will be answered as SERVFAIL from
the cache, reducing the volume of queries to authoritative servers.

1 essedarius.net. 1 IN NS ns1.example.nl.

essedarius.net. 1 IN NS ns2.example.nl.

Listing 1: DNS Zone file: essedarius.net

example.nl. 1 IN NS ns3.essedarius.net.

2 example.nl. 1 IN NS ns4.essedarius.net.

Listing 2: DNS Zone file: example.nl

Caching, but for how long? The caching duration is inversely
proportional to the volume of queries that are forwarded to author-
itative servers. Resolver developers must choose this caching value
carefully.

RFC2308 [4] states that a SERVFAIL response may be cached for
no longer than 5 minutes. That may be reasonable for this case,
given that mean-time-to-repair such cyclically dependent records
is at least minutes.

Alternatively, a resolver developer may employ a more adaptive
TTL method. For example, it may start with 5 minutes, and perform
some linear back-off to a larger value, possibly controlled by e.g.
negative TTL on the parent zone and/or RFC-specified hard limit,
such as 1 hour or 4 hours.

I.1 Testing your resolver software
To test your resolver software, set up cyclically dependent dele-
gations, as shown in Listing 1 and Listing 2. We strongly recom-
mend creating third-level domain names (as in our examples)
instead of second-level (e.g., example.nl) given that cyclically de-
pendent second-level domains will stress authoritative servers of
their respective TLDs.

After creating these cyclically dependent delegations, we suggest
the following tests:

I.1.1 Test 1: Loop Detection.

(1) Clean the cache of your resolver
(2) Monitor the traffic between the resolver and the Internet
(3) Send ONE query to your for a domain under the misconfig-

ured delegation. For example, dig A random.platypus.esse
darius.net.
• Compute how many queries are then send to the parent
authoritative servers of both misconfigured zones (lines
#1 and #2 of Listing 1 and Listing 2)

• Determine if your resolver loops indefinitely, or if eventu-
ally stop sending queries to the authoritative servers. You
may need to monitor for various minutes or hours.

Please notice that the resolver may send a SERVFAIL response to
your client, but it may remain looping, sending non-stop queries to
the authoritative servers.

For a reference, you may want to check Unbound’s source code,
which includes various cycle detections, as described in their changelog1.

1https://github.com/NLnetLabs/unbound/blob/master/doc/Changelog

random.platypus.essedarius.net
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I.1.2 Test 2: Caching Cyclic Records and Amplification.

(1) Clean the cache of your resolver
(2) Monitor the traffic between the resolver and the Internet
(3) Send ONE query to your for a domain under the misconfig-

ured delegation. For example, dig A random.platypus.esse
darius.net.

(4) Then, send this query multiple times every 5 s (or other short
interval)

• Compute how many queries are then send to the parent
authoritative servers of both misconfigured zones (lines
#1 and #2 of Listing 1 and Listing 2)

• Determine if the new, recurrent queries from your client
(dig in this case) cause your resolver to send many more
queries to reach the authoritative servers, or if they are
answered from cache.

If new user queries (dig) lead to more queries to the authoritative
servers, you resolver is then vulnerable to TsuNAME.

random.platypus.essedarius.net
random.platypus.essedarius.net
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