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Abstract—IP anycast has become a vital technology for DNS
and CDN operators alike. Yet, while big operators have their
tools to monitor and configure anycast routing, most of anycast
networks are still configured manually. In this paper, we intro-
duce a new approach to anycast management. Our solution is
based on active measurements combined with traffic engineering.
We propose the concept of a “BGP Cookbook” that allows
operators to forecast the effects of routing policy changes over
their services. We also introduce a web-based interface, called
“BGP Anycast Tuner”, that allows operators to gain insight
into their service’s performance and provides easy management
through automation. We evaluate our approach by implementing
a prototype running in a testbed composed of 12 anycast sites
covering 5 continents. We demonstrate our tool in two different
use cases: discovering and fixing a sub-optimal anycast routing
issue, and shifting traffic between continents, which is useful
during service disruptions.

I. INTRODUCTION

IP anycast is a technology that allows for the same IP
address to be announced from multiple global locations. Each
announcement is generated by one anycast site, and whole
solutions relies on inter-domain routing to allocate traffic
between sites [1] [2]. IP Anycast is used in Content Delivery
[3] [4] [5], distributed denial-of-service (DDoS) mitigation [6]
[7] [8], and by the Domain Name System (DNS) infrastructure
[9] [10] [11]. Nowadays, it is possible to identify hundreds of
anycast prefixes being used across the Internet [12].

Anycast routing divides the Internet into “catchments”,
where each site attracts a share of clients. To do that, IP any-
cast relies on BGP, the default inter-domain routing protocol
on the Internet [13]. However, this division is not perfect, and
clients sometimes wind up at faraway sites [14] [15]. To help
operators map catchments, VERFPLOETER [16] is the state-of-
the-art tool. Just mapping catchments, though, is not enough.
Operators want to control how many clients, or even which
clients, go to each site for performance and security reasons.
This can be done by changing BGP routing at anycast sites.

While large anycast operators deal with catchment control
by adding more sites, most of anycast operators needs to
perform routing adjustments to better support their users. One

example of small anycast operator are the DNS cc-TLD (coun-
try code top-level domain), who frequently owns less than
twenty sites by anycast prefix. Small anycast networks adjust
catchment by doing routing changes manually. This limits
the ability of an operator to explore the best configurations.
Moreover, such manual tasks are prone to human errors with
potentially serious consequences [17] [18] [19] [20].

To help operators address this problem, we present BGP
ANYCAST TUNER, a measurement-based tool that automates
the configuration of anycast sites, the administration of catch-
ments, and the analysis and visualization of anycast manage-
ment. Through an intuitive web-based interface, operators can
observe the predicted effects of routing policy changes, select
an appropriate configuration, and deploy it automatically.

The main contributions of our work are: (i) we establish
a systematic approach to measure the distribution of clients
of anycast services under different routing conditions, (ii)
we present and release an open source tool, BGP ANYCAST
TUNER, to manage anycast services using a routing COOK-
BOOK; and (iii) we evaluate our prototype in a real-world
anycast testbed.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. In Section III, we review
anycast routing and we establish the necessary requirements
for anycast network management. In Section IV, we present
our solution, BGP ANYCAST TUNER, followed by Section V,
where we explain details of our implementation and evaluation
on a real-world anycast testbed. Finally, we draw conclusions
and future work in Section VI.

II. RELATED WORK

Anycast has been extensively studied since it was first
proposed back in 1993 [1]. Early studies focused on the first
large-scale application of anycast to the DNS [9] [21] [22],
and on architectures for creating a global anycast service [3]
[4]. More recently, anycast was used as a security tool [23]
[6] [24]. Hesselman et al. [25] study how to provide a control
plane for DNS top-level domain (TLD) operators to increase
security and stability of TLDs, while Rizvi et al. [8] describe



a method for building a “response playbook” for the use of
BGP to shift anycast traffic when under DDoS attacks.

On anycast routing and performance, Ballani et al. were the
first to study anycast performance metrics [26]. Wei et al. [27]
show that while anycast routing is generally stable, a small
number of routes sees persistent instability. De Vries et al.
[28] developed VERFPLOETER to measure anycast catchments
and later deployed it in one of the largest global anycast CDNs
[29]. McQuistin et al. [30] analyze the impact of routing on
anycast CDNs. Recently, Wei et al. [31] proposed a system to
detect latency issues through an anycast/unicast probing.

Although there is no specialized management for anycast
networks yet, Wiefferink [32] evaluated how current tools can
help in the analysis of anycast, while Costella et al. [33] built
a solution to visualize anycast catchments.

III. REQUIREMENTS

In this section we discuss the challenges and requirements
of managing anycast services. First, however, we present fun-
damental concepts that help understand the proposed solution.

By using anycast, services are hosted on multiple servers
using the same IP address. Figure 1 depicts an anycast service
where three sites (Sn) share the address 10.0.0.1. Each
client (bottom part) tries to reach the server IP via distinct
paths according to AS (clouds) interconnect relationships
(straight lines). Under the hood, BGP is responsible for
selecting the routing path for each destination according to
a set of metrics and policies. The color of each AS shows its
preference in reaching the 10.0.0.0/24 prefix.

Fig. 1: Anycast catchment example.

Each site has a so-called catchment, which is the set of
clients that reaches it. The catchment of the green site (S1)
consists of client 1, the red site (S2) attracts no clients, and
the blue site (S3) attracts clients 2 and 3.

An operator observing the anycast network in Figure 1 may
conclude that: (i) client 2 is likely better served by the red
server (S2) than the blue one (S3), and (ii) in order to make the
red server (S2) attract client 2, routing must be reconfigured.

There are many cases where the catchment of an anycast
service may be less than ideal for some clients [31]. To modify
client catchment – i.e., to make a client end up at a different
anycast server – BGP Interdomain Traffic Engineering (BGP-
TE) [34] would be required. While Figure 1 is just a toy
example, to perform this for a real anycast network with tens,

or even hundreds of sites, the use of management tools is
essential. Anycast operators need to know, for example, how
clients are distributed across the anycast service, what would
be the optimal catchment for a particular client, and how traffic
engineering affects the catchment distribution.

Our goal is to make operating an anycast service easier
by introducing management tooling. In the remainder of
this section, we introduce requirements for such management
tooling. Table I provides an overview, and we discuss each
requirement in detail next.

Requirement Anycast service management tooling. . .

R1 needs to map site catchments
R2 needs to control site catchments
R3 support several metrics for clients and sites
R4 automatically discover traffic engineering (TE) options
R5 support fast, atomic configuration deployment
R6 have a simple and scalable management interface

TABLE I: Requirements for anycast traffic management.

R1: Catchment Mapping — To understand the traffic
distribution and observe deviations from the baseline, it is
essential to map the catchment of each anycast site. Anycast
catchments can be measured both passively and actively. Pas-
sive approaches rely on analyzing incoming flows to anycast
sites. Active approaches, in turn, generate traffic from vantage
points (VPs) in typically two approaches: using application
clients such as RIPE Atlas [35], or by probing the Internet
and observing the answers [28].

R2: Traffic Engineering(TE) for Catchment Control —
Although the anycast operator does not have control of the
routing path that each client uses, it is possible to use BGP
attributes to influence the routing preferences at the AS-
Level. The most common used attributes are AS-Path prepend-
ing [36], and community strings [37]. Anycast management
tooling must support easy manipulation of routing policies for
all anycast sites and measure its impact on the service (R1).

R3: Support for “Pluggable” Metrics — While catchment
control is a common goal of operators, the motivation for
exerting such control varies. For example, a common go-to
metric to measure User-Experience is delay, such as round-
trip time [38]. However, other goals and metrics should also
be supported. Consider for example an operator who needs to
control in which geographic region clients end up, in order
to comply with a country’s laws. In this case, client metrics
should include IP Geo-location [15] [39]. Another example is
when the objective is to handle DDoS attacks; in this situation,
metrics should consider site metrics, as interface loss rate and
CPU loads [6] [8].

R4: Automated Discovery of TE Options — As previously
discussed, anycast operators may use individual site TE (traffic
engineering) options to modify the catchment distribution.
Such options is tied to how the site is connected (e.g., number
of peers and policies). More sites and richer connectivity
provide ranges from dozens to thousands policies. By com-
bining all options, the operator has a complex problem to



solve: which BGP policy should be used and which are its
effects on site catchments? To deal with this complexity, one
requires an automated method to measure all the BGP policies
available per site, and map their side effects in term of client
distribution.

R5: Fast, Atomic Configuration Deployment — Manual
routing configuration of each site does not scale for anycast
networks. Problems, such as DDoS attacks, make it necessary
to quickly act when deploying a chosen routing configuration.
Therefore, a key requirement for an anycast management
system is that a new routing configuration must be deployed
in a fast and atomic way on all sites that together comprise
the anycast service.

R6: A Simple and Scalable Management Interface — Most
anycast services range in size from a few to tens of different
sites. A requirement for a management system therefore is that
its interface must be able to accommodate these differences in
scale. Furthermore, a management interface should be intuitive
for operators, both in visualizing the catchment distribution
(helping operators understand how routing affect catchments)
and in changing routing policies to achieve certain goals (e.g.,
shift traffic away from certain sites, improve performance for
certain clients, prioritize sites with spare capacity).

IV. APPROACH

In this section, we describe our approach to manage anycast
client distribution, how we test routing policies, optimize this
process, and provide this information to operators.

Stop

Start

CookBook

More policies? Yes

Build BGP Cookbook

Deploy Routing Policy

Catchment measurement

Operator

No

RPDB

Fig. 2: Method used to map the effect of traffic engineering
over the anycast client distribution.

A. Overview

We propose a scalable methodology to map the effects of
client distribution over anycast sites given a BGP routing
policy. Figure 2 shows a schematic overview of our approach.
To bootstrap the process, it is fundamental to determine all the
available BGP policies per site. This information is stored in a
BGP Routing Policy Database, and it is used to deploy the con-
figuration. The process Deploy Routing Policy is responsible
for applying a routing configuration on the sites of the anycast
service. Next, we perform the Catchment Measurement. Data
from this measurement describes the client distribution per site

at each deployed BGP policy. We summarize this distribution
in a COOKBOOK that describes the effect of a particular policy
on the anycast service. Finally, an Operator (top-right) can
choose which policies the system evaluates, and select an
appropriate one to achieve certain operational goals.

B. The Routing Policy Database (RPDB)

An anycast service typically consists of multiple sites, each
with their own external connectivity and different options to
influence routing. We map all these possible BGP routing
scenarios in a centralized repository named Routing Policy
Database. This database reflects the BGP peering agreement
established between each site and the respective upstream
provider and/or Internet eXchange Point (IXP).

Table II illustrates the concept for one site in our example
network from Figure 1. This table shows six BGP routing
policies that can be applied on site S3. Column Peer describes
the BGP neighbors of the site, i.e., where the routing policy
will be deployed. Prefix describes the routing prefix that
is advertised in conjunction with the Routing Policy. For
example, in the first row (Baseline), no routing policy is used.
From rows 2 up to 3, AS-Path prepending is used, and in
the last two rows the BGP community strings noPeer and
noExport are used [40].

Policy Id Site Peer Prefix Routing Policy

Baseline S3 P3 10.0.0.0/24 –
1xPrepend S3 P3 10.0.0.0/24 ASn

2xPrepend S3 P3 10.0.0.0/24 ASn ASn

3xPrepend S3 P3 10.0.0.0/24 ASn ASn ASn

noPeer S3 P3 10.0.0.0/24 community 65535:65284
noExport S3 P3 10.0.0.0/24 community 65535:65281

TABLE II: Example of RPDB for Figure 1.

Operators must decide upon which policy will be added
to RPDB. More combinations means more TE options and
more fine-grained traffic control. Too many combinations,
however, can lead to time being spent on low impact anycast-
TE options. The operator is responsible for establishing a
trade-off between policy combinations and useful results to
store in the COOKBOOK.

C. Deploying Routing Policy

With RPDB in place, the next step is to deploy one routing
policy (one row from Table II). While deploying a policy, it
is important to observe best practices on inter-domain routing,
such as BGP convergence time and route flapping [41].

D. Catchment Measurement

At this point, the anycast sites are configured with the
selected BGP policy. Next, we need to map the client distribu-
tion and other metrics affected by the deployed configuration.
Which other metrics to consider depends on the goals of the
operator, but that can include, for example, geographic location
of clients or traffic load on each site. In our approach, we
choose the methodology of De Vries et al. [28] because it
is an active measurement, has larger coverage, and delivers a
more impartial view than the other options available.



E. The BGP COOKBOOK

After deploying each routing policy and measuring its
impact, we store the results in a database named the BGP
COOKBOOK. This name derives from the idea that we consider
each routing policy as an ingredient used to build different traf-
fic engineering recipes. While in RPDB we store all possible
routing policies available, in the COOKBOOK we just store
those whose results are relevant in the eyes of the operator
(manual), or following parameters established by the operator,
such as the percentage gain (in terms of traffic shift) compared
to previous stored recipes (automated).

Table III shows a possible COOKBOOK for our example
from Figure 1. Let’s assume that the operator wants to dis-
tribute the clients evenly over the sites. It is important to
remember that, in the baseline situation shown in Figure 1,
S3 attracts two clients while S2 does not attract any.

Policy Id Routing Policy Metric Qt Catchment
S1P1 S2P2 S3P3 S1P1 S2P2 S3P3

Baseline – – – 1 0 2
1xS3 – – 1xPrep 1 2 0
noPeerS3 – – noPeer 1 1 1
-3xS2 3xPrep – 3xPrep 0 3 0

TABLE III: Example of COOKBOOK for Figure 1.

In this COOKBOOK, we find our normal state (Baseline) and
three distinct anycast-TE strategies: 1xS3, saying one prepend
on S3P3 will result in clients C1 and C2 shifting from the
Blue Site to the Red one; noPeerS3, forecasting the metric
QtCatchment will be equalized if we deploy a policy called
noPeer (BGP community no-peer) on site S3; and the -
3xS2, indicating reverse prepend or negative prepend as a
composite policy to bring all clients to S2 through prepending
on all sites except S2. As can be noticed, noPeerS3 is the
policy aligned with the operator’s goal.

F. Process Optimization and Limitations
While the process described so far yields a useful COOK-

BOOK of relevant routing configurations, there are two im-
portant concerns regarding scalability: (i) the time required to
deploy and collect metrics for each anycast-TE recipe; and (ii)
the combinatorial explosion resulting from an increase in the
number of anycast sites.

In our prototype (Section V), we can check around 60
distinct routing policies per day. If we build the entire COOK-
BOOK for our example at Figure 1–3 anycast sites and 5
policies–we would spend over 6 hours (3 × 5 × 25 min).
However, if we test all possible policy combinations, such
as the -3xS2 in Table III, we would spend around 52 hours
(53 × 25 min). If we expand our toy scenario to 10 sites and
7 policies per site, a naı̈ve test would take thousands of years.

However, instead of testing all possible combinations, we
can choose an explore-and-test approach to significantly re-
duce the number of tests. The policy selection can be opti-
mized by considering one of the following approaches:

• Customer Cone: Based on number of customers of each
AS [42], we were able to reduce nearly 99% of individual

peer tests on IXPs. We selected just to apply policies on
ASes with large cone sizes as provided by AS-Rank [43].

• Sparse Test: For each class of test, we can divide all
combinations into smaller chunks and we try the best
and worst cases on each chunk first. If results are not
good, we stop (e.g., we try 3-prepends and compare with
site baseline before trying 1 or 2 prepends). We could
reduce in 83% the test on individual routing policies.

• Representativeness: We do not try policies for peers that
account for less than 1% of a site’s catchment.

• Human-in-the-Loop Factor: An operator knows best
when it is good enough to stop testing more policies.

Although with lower impact, there is also room to optimize
the other time-consuming part of our process, measuring the
catchment. Our chosen measurement system uses a hit list to
probe at least one address in each routable /24 prefix on the
Internet. We can reduce time by reducing the list in two ways:

• Hitlist shrinking: Probing just a single address per
prefix. As most prefixes on full routing table are larger
than /24 (e.g., of size /16), we reduced the hit list in 87%.

• Hitlist dimming: Probing a single address per AS. While
this reduces visibility into the largest ASes, which may
not have homogeneous routing policies for all of their
prefixes, the view on smaller ASes remains precise, and
the number of measurements was vastly reduced by 98%.

G. The BGP Anycast Tuner Interface

The BGP policies and metrics summarized in the COOK-
BOOK aim to help an operator chose the best routing policies
to achieve a certain goal. However, choosing the best solution
can be a complex task when hundreds of policies are available.

A closer examination of our approach shows that the results
we stored in the COOKBOOK are mainly about attracting
more traffic to a site, or reducing it. Also consider the fact
that anycast is a “closed system”, i.e., if one site attracts
more traffic, other sites will lose such traffic. With this in
mind, it is possible to think of each individual site having
a limited number of options within a band of possibilities
ranging between positive (attract more traffic) and negative
(reduce traffic) values, and if one site is changed, all other
sites will change as well, compensating the difference. This
concept reminds of an old-fashioned “sound tuner”, leading us
to chose this as a metaphor for our graphical user interface.

BGP ANYCAST TUNER is a prototype graphical interface
that brings together all parts of our methodology. It provides
a simple and intuitive interface for operators and presents the
distribution of clients over the anycast sites for the different
pre-determined BGP configurations from the BGP COOK-
BOOK. Figure 3 presents the BGP ANYCAST TUNER graphi-
cal user interface. The figure shows the client distribution for
each site using a histogram (in blue), and sliders underneath
the histogram. Using these sliders, operators can increase or
decrease the catchment of a site using a set of predetermined
settings indicated by “notches” on the slider. These notches
correspond to specific BGP policies, the effect on catchment



we previously determined using measurements. As the exam-
ple also shows, these notches are not evenly distributed across
the slider, reflecting the fact that the flexibility of a site to shift
clients to or from other anycast sites varies. In other words,
it reflects the fact that some BGP policies result in a larger
shift in catchment than others. In addition, some sites have
more degrees of control because of their relationships with
their BGP neighbors and traffic agreements. Also notice that
the sliders for the sites are linked, i.e., if the slider of one site
is moved, all other sliders move as well to reflect the fact that
a change in catchment for one site automatically means the
catchments of all other sites change as well.

Fig. 3: BGP Anycast Tuner user interface.

V. PROTOTYPE AND EVALUATION

In this section, we evaluate our approach against the require-
ments discussed earlier in Table I. For this evaluation, we pro-
totyped our approach and implemented it on an anycast testbed
infrastructure. In the subsequent subsections, we describe our
testbed, the results we obtained in terms of traffic engineering,
and show how the prototype behaves in two scenarios. The
prototype code can be found in our repository1.

A. Prototype Environment and Implementation

We built our prototype on top of our anycast testbed
TANGLED [44]. This testbed consists of 12 anycast sites across
the globe. It have a good diversity of peers, being connected
to IXPs, cloud providers, commercial transit providers, and
academic networks. Such similarly to industry environment
supporting a full-range of routing agreements, make it a
challenging testing ground for our approach.

We note that, although the prototype was implemented in
the TANGLED anycast testbed, the implementation method is
not tied to its specific topology, sites, or network resources.
Furthermore, our goal for the evaluation is not to quantify or
measure results specific to the testbed, but rather to validate
that our approach works and meets the requirements. Thus,
we restricted the choice of routing policies in our evaluation
process, avoiding combinations of policies and sending the
same BGP announcements to all peers at each site.

1https://github.com/SIDN/BGP-Anycast-Tuner

Our prototype consists of four parts: (i) a routing policy
deployment tool based on ExaBGP that is used to deploy the
selected routing policy on all the sites of the anycast service,
(ii) an anycast-TE orchestration tool that deploys a chosen
recipe from the COOKBOOK on all sites and coordinates the
catchment measurement with VERFPLOETER, (iii) a statistical
analysis tool for the catchment measurement data that persists
resulting metrics to the COOKBOOK, and finally (iv) two
dashboards for the operator, one to visualize catchment data
and one for load tuning (the latter forms the core of our
approach and brings together all of its components).

As part of the deployment process, we wait for BGP to
settle for 10 minutes. This amount of time is presented in the
literature [45] [46] [47] as a necessary routing and forwarding
convergence time.

B. A Cookbook for Tangled
As the first step of our evaluation, we build a COOKBOOK

for the TANGLED testbed. To make the evaluation easier to
explain, we show just a subset of 6 anycast sites and 13
distinct routing policies per site (the entire cookbook has 78
policies). Every line in Table IV represents a measurement
in our testbed and the respective percentage of /24 networks
handled by each site for each BGP policy. We highlight the
row with our service baseline (regular BGP announcement).
We also highlight the site LHR and sort the table in descending
order, from maximum load (64.58%) to minimum load (0%).

Observing our baseline, we note that 7.22% of clients went
to the site located in Paris (CDG); 15.28% went to Washington
D.C. (IAD); 23.38% went to London (LHR); 15.97% to Miami
(MIA); 20.98% went to Porto Alegre (POA), and 17.16%
went to Sydney (SYD). In the Anycast-TE column, we use
mnemonics (e.g., -2xLHR) to describe two negative prepends
for site LHR (the negative notation means two prepends on
all sites except LHR). Other examples of mnemonics are
1xLHR to describe a single prepend for the London site,
and LHRnoPeer and LHRnoExp to express that the BGP
community noPeer and noExport were used at London.

The measurement data in Table IV predicts the number of
clients at each site for each BGP configuration. Operators can
use this table to configure their anycast service depending
on the desired load on sites. Ordering entries by LHR load,
as we did, reflects an operator strategy to select how much
traffic he/she wants to bring to or remove from LHR. In
anycast services with many sites, however, this process may
be confusing and error-prone. To address this challenge, we
introduced BGP ANYCAST TUNER to automate this process
and visualize it in an intuitive manner. Effectively, ordering the
table illustrates how the slider for LHR in the BGP ANYCAST
TUNER interface shown in Figure 3 is populated.

In the next subsections, we present two scenarios in which
we applied our approach in the TANGLED testbed.

C. Scenario 1: Catchment Visualization and Troubleshooting
This scenario shows how our prototype meets requirements

R1, R2, R3, R4, and R6. The scenario illustrates how an
operator can detect and repair a case of sub-optimal routing.



Anycast-TE CDG IAD LHR MIA POA SYD

-2xLHR 2.04 15.17 64.58 8.89 8.05 1.26
-1xLHR 2.42 15.03 54.09 12.39 14.55 1.50
2xMIA 7.68 16.15 30.33 2.35 20.39 23.09
2xIAD 7.03 14.62 25.02 16.19 19.73 17.41

Baseline 7.22 15.28 23.38 15.97 20.98 17.16
-1xIAD 4.15 47.38 14.89 9.33 6.78 17.46
-3xSYD 1.47 15.70 10.61 4.10 9.41 58.71
-3xCDG 55.49 15.04 8.86 9.12 10.17 1.31
1xLHR 15.14 17.18 7.94 17.45 22.63 19.65

LHRnoPeer 15.84 20.19 3.03 17.79 23.69 19.47
3xLHR 15.92 21.08 1.97 17.81 23.62 19.60
-5xIAD 0.77 88.11 1.68 3.09 2.19 4.16

LHRnoExp 16.78 21.82 0.00 17.75 24.23 19.42

TABLE IV: COOKBOOK for the TANGLED testbed.

To better visualize catchment information for operators,
we developed an interactive web interface (Figure 4). This
interface allows operators to investigate site catchment and
detect client distribution anomalies, such as identifying which
anycast sites serve a specific country or AS.

In this case, Figure 4 shows which anycast sites are pre-
ferred by US clients (R1) in the baseline situation (Figure 3).
We select US clients based on geolocation of the source IP
addresses hitting each site (R3). The leftmost (green) box
shows all TANGLED sites and the US being selected as
catchment source. The middle box (blue) shows that 40.28%
of US customers prefer the US-MIA site, 33.11% BR-POA,
16.02% US-IAD, 8.60% UK-LHR, and 1.98% are distributed
over other sites. At this point, an operator may wonder why
so many clients from the US get routed to a site in Brazil.
The operator then selects BR-POA in the middle box, which
triggers a list of autonomous systems to be shown in the
rightmost box (red). This rightmost box shows the top 5 ASes
from the US hitting BR-POA, showing that 38.3% of them are
from AS7922 (Comcast), 9.49% from AS20115, 5.81% from
AS10796, 5.34% from AS20001, and 4.54% from AS11427
(the last four ASes all belong to Charter Communications).

Fig. 4: Dashboard for catchment inspection and visualization.

An operator may then wish to remediate this issue and
bring the US traffic hitting sites in Brazil back to the US.
By using BGP ANYCAST TUNER, operators can experiment
with different routing policies, something that is a tedious and
time-consuming manual process without the intuitive interface
of BGP ANYCAST TUNER on Figure 3 (R2, R6).

While further policy refinement may be needed to optimize
the last fraction of clients getting misrouted, this scenario

shows the how BGP ANYCAST TUNER can make the task
of troubleshooting anycast performance easier for operators.

D. Scenario 2: Moving Traffic
In this scenario, we demonstrate how we accomplish re-

quirements R2, R4, R5, and R6, by showing how an operator
can move as much traffic as possible to a specific location.

Here, we mapped a set of policies to deploy specific action.
This mapping allows operators to move traffic just moving
one slider in Figure 3. For example, if the slider for Paris
(CDG) is moved all the way up, as much traffic as possible
is attracted to this site. The sliders for the other sites also
change and the histogram shows that the majority of clients
will now move to the catchment of the site in Paris. Doing
this, it fulfils requirements about mapping (R1), control (R2),
and an easy-to-use interface (R6).

Notice that the prototype interface also provides a drop-
down menu on the left-hand side of the interface in Figure 3.
This drop-down menu allows operators to pick a goal, e.g.,
“Bring traffic to Europe”. These goals correspond to preset
slider positions and thus to a preset combination of BGP
policies among the ones presented. This feature alows a fast
traffic engineering deployment, thus fulfilling (R5).

VI. CONCLUSIONS

The use of anycast is becoming increasingly common and
important; every year more service providers use it to improve
the robustness of their services and the user’s quality-of-
experience. In this paper, we introduced a new approach
to address these problems. In our approach, we register all
routing policies available at each site in an anycast service.
We then measure and map site catchments for each routing
policies. This mapping can predict the most optimal traffic
engineering scenarios to be implemented on anycast sites.

We then prototype a set of tools to assist operators to mon-
itor and manage catchment of their anycast network in real-
time. The core of our approach is an intuitive web interface
that we call the BGP ANYCAST TUNER. This interface eases
the burden of managing an anycast service for operators. We
tested and showcased the prototype on a global anycast testbed
spanning 12 sites on 5 continents. In two case studies, we show
how the BGP ANYCAST TUNER can be used to identify sub-
optimal routing of traffic (to a remote site) and how traffic on
a live anycast service can be shifted to a desired location with
a single mouse click.

We publish all tools under an open source license in a public
repository1. As a next step, we are working with the operations
team of SIDN, the operator of the .nl ccTLD, to deploy our
approach on their production anycast service.
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