Overlooked and Neglected

How NTP services and clients leave billions of devices exposed to unnecessary risk

Giovane C. M. Moura

SIDN Labs and TU Delft SURFnetworking 2025 Utrecht, The Netherlands 2025-12-10

Summary of two tech reports

Are NTP clients always right?

Evaluating NTP clients under normal and attack scenarios Technical Report SIDN Labs 2025-10-16

Update: 2025-10-30

Shreyas Konjerla

TU Delft Delft, The Netherlands s.konjerla@student.tudelft.nl

Georgios Smaragdakis

TU Delft Delft, The Netherlands G.Smaragdakis@tudelft.nl

Giovane C. M. Moura

SIDN Labs and TU Delft Arnhem and Delft, The Netherlands giovane.moura@tudelft.nl

Tamme Dittrich

Tweede Golf Nijmegen, The Netherlands tamme@tweedegolf.com

Credit goes to all authors involved in both reports

Summary of two tech reports

BigTime: Characterizing Large Time Service Providers

Technical Report SIDN Labs 2025-12-01

Pascal Huppert University of Twente and University of Münster The Netherlands / Germany pascal.huppert@utwente.nl

Pieter-Tierk de Boer University of Twente The Netherlands p.t.deboer@utwente.nl

Giovane C. M. Moura SIDN Labs and TII Delft The Netherlands giovane.moura@sidn.nl

Ralph Holz University of Münster and University of Twente Germany / The Netherlands ralph.holz@uni-muenster.de

Georgios Smaragdakis g.smaragdakis@tudelft.nl

TU Delft

The Netherlands

Marco Davids SIDN Labe The Netherlands marco.davids@sidn.nl

Rein Fernhout University of Twente The Netherlands r.p.i.fernhout@student.utwente.nl

Cristian Hesselman SIDN Labs and University of Twente The Netherlands cristian.hesselman@sidn.nl

Credit goes to all authors involved in both reports

Outline

Introduction

Clients

Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy

Timekeeping over time

Ancient Roman Sundial Pompeii, 70 AD

Churches with pendulum clocks Middle ages to now

Timekeeping nowadays

Atomic "clocks": oscillators

US NIST-F2
Precision: 1s in 300M
years

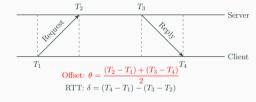
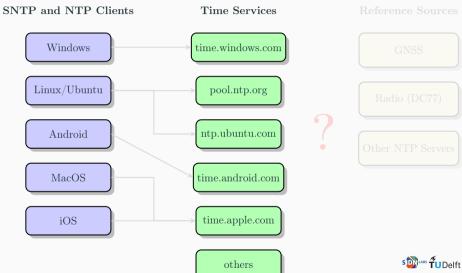
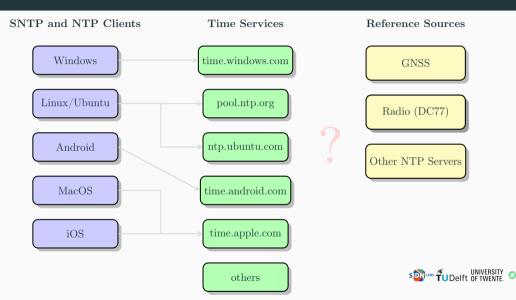
- Reference sources (GNSS, Atomic, Radio (DC77) etc) produce time info
- Distributed over the Internet
 - Using the Network Time Protocol (NTP)
- (SIDN provides free time service at https://time.nl)

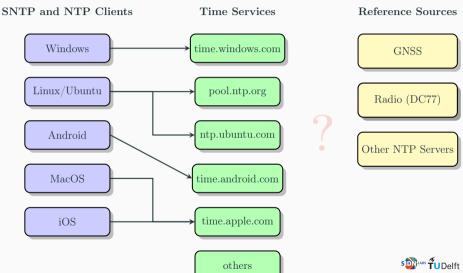
Why clock synchronization matters?

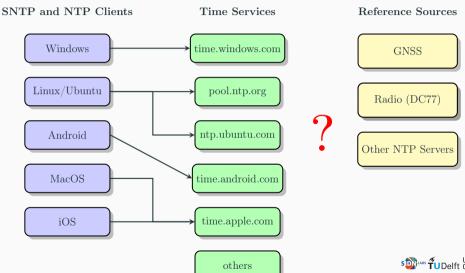
- It underpins modern life:
 - Phone sync
 - Computers sync
 - Utility bills
 - Trains on time
- On the Internet:
 - TLS
 - DNSSEC
 - DNS caches
 - RPKI
- USNO 2012 time incident caused outages in multiple places

The NTP protocol

- NTP is the default protocol for clock sync
- Clients queries NTP servers
 - ullet which responde with correct time
- Without NTP, client's clock would drift
- Standards: NTPv4, SNTP, NTS
 - New: NTPv5 (in dev)


Figure 1: Timestamps used in NTP offset calculations



Outline

Introduction

Clients

Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy

NTP Clients

Are NTP clients always right?

Evaluating NTP clients under normal and attack scenarios Technical Report SIDN Labs 2025-10-16

Update: 2025-10-30

Shreyas Konjerla

TU Delft
Delft, The Netherlands
s.konierla@student.tudelft.nl

Georgios Smaragdakis

TU Delft Delft, The Netherlands G.Smaragdakis@tudelft.nl

Giovane C. M. Moura

SIDN Labs and TU Delft Arnhem and Delft, The Netherlands giovane.moura@tudelft.nl

Tamme Dittrich

Tweede Golf Nijmegen, The Netherlands tamme@tweedegolf.com

NTP Clients

Client (version)	User base	\mathbf{OS}	Release
$\texttt{macOS}\ (15.4.1)$	$2.2B^{*}$	macOS	Sept 2024
W32Time	1.4B	Windows	Apr 2025
$\mathtt{timesyncd}\ (255.4)$	_	Ubuntu	Sept 2024
$\mathtt{NTPSec}\ (1.2.2)$	_	Ubuntu	Nov 2024
$\mathtt{NTPD-RS}\ (1.1.2)$	_	Ubuntu	Jan 2025
${\tt ntpd}\ (4.2.8 {\tt p}18)$	_	Ubuntu	Jun 2023
$\mathtt{OpenNTPd}\ (1\text{:}6.2\mathrm{p}3\text{-}4.2)$	_	Ubuntu	Oct 2022
Chrony (4.5)	_	Ubuntu	Oct 2024

Table 1: Clients highlighted are OS defaults and SNTP-based. *Includes macOS and iOS devices.

NTP Clients

Client (version)	User base	\mathbf{OS}	Release
$\texttt{macOS}\ (15.4.1)$	$2.2B^{*}$	macOS	Sept 2024
W32Time	1.4B	Windows	Apr 2025
${\tt timesyncd}\ (255.4)$	_	Ubuntu	Sept 2024
$\operatorname{NTPSec}\ (1.2.2)$	_	Ubuntu	Nov 2024
$\mathtt{NTPD-RS}\ (1.1.2)$	_	Ubuntu	$\mathrm{Jan}\ 2025$
${\tt ntpd}\ (4.2.8{\tt p}18)$	_	Ubuntu	Jun 2023
$\mathtt{OpenNTPd}\ (1\text{:}6.2\mathrm{p}3\text{-}4.2)$	_	Ubuntu	Oct 2022
Chrony (4.5)	_	Ubuntu	Oct 2024

Table 1: Clients highlighted are OS defaults and SNTP-based. *Includes macOS and iOS devices.

What did we do

- 1. Evaluated clients under normal operations
- 2. And under attack (time-shift attacks)

Setup: we configure the clients to query 3 servers we run ourselves

Clients under normal operations

		Queries Per Server		
Client	Avg/h	S1	S2	S3
Chrony	80.37	1,643	1,498	1,681
macOS	5.15	102	101	106
ntpd	12.32	246	246	246
NTPD-RS	250.8	5,012	5,012	5,026
OpenNTPd	22.68	425	473	463
NTPSec	16.82	336	336	337
W32Time	3.55	80	77	56
timesyncd	1.77	108	0	0

Table 2: Queries sent per hour per client, broken down by server. Highlighted are SNTP clients.

Clients under normal operations

Findings:

- 1. Default clients are all SNTP
 - not supposed to be used like this
- 2. Large variation in traffic
- 3. timesyncd, used in Ubuntu, Flatcar, and many Linux Server distros, use a single time source
 - violates RFC8633

		Queries Per Server			
Client	\mathbf{Avg}/\mathbf{h}	$\mathbf{S1}$	S2	S3	
Chrony	80.37	1,643	1,498	1,681	
macOS	5.15	102	101	106	
ntpd	12.32	246	246	246	
NTPD-RS	250.8	5,012	5,012	5,026	
OpenNTPd	22.68	425	473	463	
NTPSec	16.82	336	336	337	
W32Time	3.55	80	77	56	
timesyncd	1.77	108	0	0	

Outline

Introduction

Clients

Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy

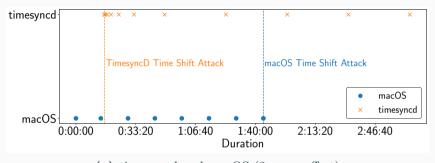
Attacking Clients

- We now do new experiments where we do time-shift attacks
 - we lie about the time
 - goal: mess up with client's clock
 - most dangerous type of attack

Attacking Clients: results

	Offset					
Client	900s	1M	2M	3M	1Y	2Y
macOS	1	1	✓	✓	✓	✓
W32Time	1					
timesyncd	1	1	1	✓	✓	1
NTPSec						
NTPD-RS						
ntpd						
OpenNTPd						
Chrony						

Table 3: Client behavior to time shift attacks. (\checkmark) shows vulnerable clients. (M = month, Y = Year).


Attacking Clients: results

- All OS Default clients are vulnerable!
 - MS caps time shifts at two weeks
- None of the NTP clients are vulnerable
 - only SNTP clients

	Offset					
Client	900s	1M	2M	3M	1Y	2Y
macOS	1	1	1	1	1	1
W32Time	1					
timesyncd	1	1	1	1	1	1
NTPSec						
NTPD-RS						
ntpd						
OpenNTPd						
Chrony						

Vulnerability to time-shift attacks (\checkmark = vulnerable).

How long does it take for the atack to succeed

(a) timesyncd and macOS (2 years offset)

Figure 2: Time-series of NTP queries for systemd-timesyncd and macOS. Dashed lines show when the attacks succeed.

Recommendations

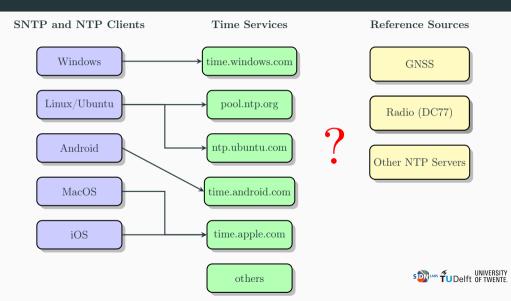
- 1. For operators: do NOT use default clients (no timesyncd)
 - For SURF folks here, check your Linux VMS: timesyncd has got to go
- 2. For vendors: do what Ubuntu did, stop using SNTP clients for these OSes
- 3. Use NTS servers to prevent man-in-the-middle attacks

Extra: we found 10 bugs in software and notified vendors. See report

Outline

Introduction

Clients


Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy

Time services providers

BigTime: Characterizing Large Time Service Providers

Technical Report SIDN Labs 2025-12-01

Pascal Huppert University of Twente and University of Münster The Netherlands / Germany pascal.huppert@utwente.nl

Pieter-Tjerk de Boer University of Twente The Netherlands p.t.deboer@utwente.nl Giovane C. M. Moura SIDN Labs and TU Delft The Netherlands giovane.moura@sidn.nl

Ralph Holz University of Münster and University of Twente Germany / The Netherlands ralph.holz@uni-muenster.de SIDN Labs The Netherlands marco.davids@sidn.nl

Marco Davids

Rein Fernhout University of Twente The Netherlands r.p.j.fernhout@student.utwente.nl

Georgios Smaragdakis TU Delft The Netherlands g.smaragdakis@tudelft.nl Cristian Hesselman SIDN Labs and University of Twente The Netherlands cristian.hesselman@sidn.nl

Time services providers

Provider	Domain Name	User Base
Microsoft	time.windows.com	1.4B
Apple	time,time-[macos,euro,ios].apple.com	2.2B
Google	time.android.com, time.google.com	3.0B
Ubuntu	ntp.ubuntu.com	Unclear
AWS	time.aws.com	-
Cloudflare	time.cloudflare.com	-
Meta	time,time[1-5].facebook.com	-

Table 4: Evaluated time service providers. Providers highlighted are enabled by default in their respective operating systems (OSes).

What do we evaluate?

- 1. Their replication architecture
 - They have to serve BILLIONS of daily clients
- 2. Their client/server mapping
- 3. Their accuracy

Outline

Introduction

Clients

Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy

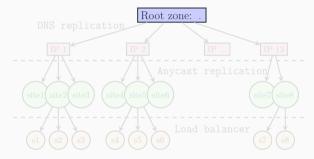


Figure 3: Service replication in the Root DNS system

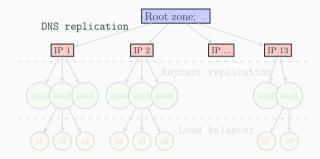


Figure 3: Service replication in the Root DNS system

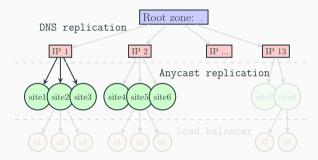


Figure 3: Service replication in the Root DNS system

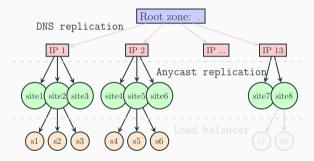


Figure 3: Service replication in the Root DNS system

Replication: the Root DNS system

Example of DNS replication

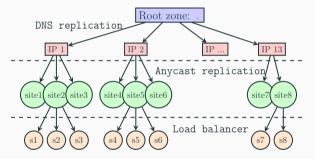


Figure 3: Service replication in the Root DNS system.

Time providers: DNS replication

	Domains	IPv4	IPv6	ASes v4	ASes v6
Microsoft	1	12	0	1	0
Apple	4	53	48	2	2
Google	2	4	4	1	1
Ubuntu	1	4	3	1	1
Amazon	1	90	90	2	2
Cloudflare	1	2	2	1	1
Meta	1	5	5	1	1

Table 5: DNS-level replication of time service providers.

Time providers: Anycast replication

Provider	Prefixes	Anycast	Sites (IPv4)	Sites (IPv6)
Microsoft	11/0	No	_	_
Apple	53/48	No	_	_
Google	1/1	Yes	41	No data
Ubuntu	4/3	No	_	_
AWS	46/9	No	_	_
Cloudflare	1/1	Yes	63	47
Meta	5/5	Yes	8	11

Table 6: Anycast replication of time service providers.

Time providers: Anycast replication

Provider	Prefixes	Anycast	Sites (IPv4)	Sites (IPv6)
Microsoft	11/0	No	_	_
Apple	53/48	No	_	_
Google	1/1	Yes	41	No data
Ubuntu	4/3	No	_	_
AWS	46/9	No	_	_
Cloudflare	1/1	Yes	63	47
Meta	5/5	Yes	8	11

Table 6: Anycast replication of time service providers.

Server replication for time providers

Provider	DNS Replication?	Anycast?	Load balancer?	
Microsoft	Yes	No	_	
Apple	Yes	No	No*	
Google	Yes	Yes	_	
Ubuntu	Yes	No	No*	
Cloudflare	Yes	Yes	_	
Meta	Yes	Yes	_	
AWS	Yes	No	_	

 Table 7: Server replication for time providers

Unicast NTP servers geolocation

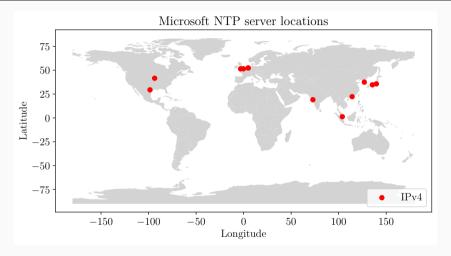


Figure 4: Microsoft.

Unicast NTP servers geolocation

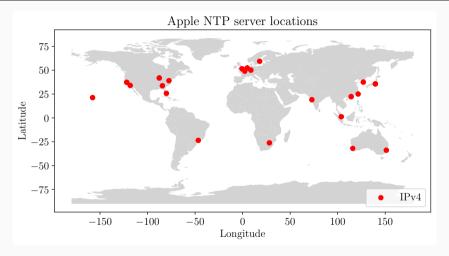


Figure 5: Apple.

Unicast NTP servers geolocation

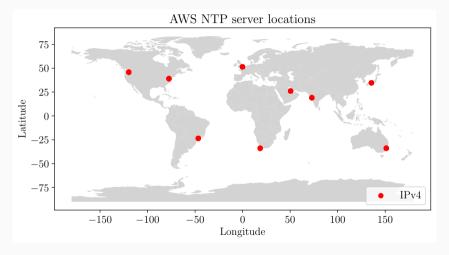


Figure 6: AWS.

Outline

Introduction

Clients

Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy

Server mapping mechanisms

- Anycast: BGP maps clients to nearest site
- Unicast: All providers use geolocation for mapping

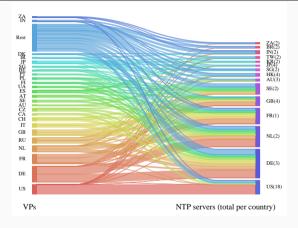
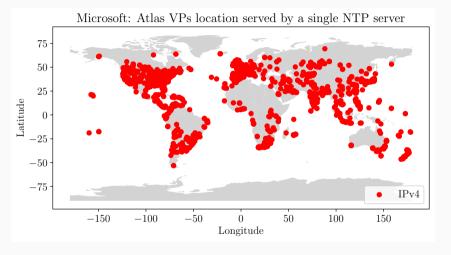



Figure 7: Apple geo-based mappings

Problem: Microsoft: 50% of VPs receive 1 IP address

That's a violation of RFC8633 – more than 1 time source

Outline

Introduction

Clients

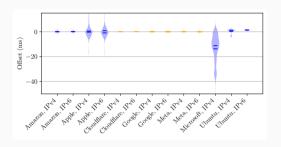
Attacking Clients

NTP Providers

Replication

Client/Server mapping

Accuracy


Accuracy

- NTP services MUST be accurate
- We carry out experiments from two VPs with "ground truth"

\mathbf{VP}	ASN	Time Source	Method
SE-AWS	16509	GNSS, atomic	РНС
NL-SIDN	1140	GNSS, radio, atomic	Linux PTP

 Table 8: Accuracy Experiment Vantage Points

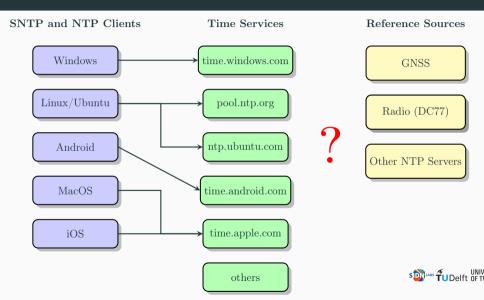
Offset distributions (violin plots)

SE-AWS

Positive offset means server clock is ahead of reference.

NL-SIDN

Positive offset means server clock is ahead of reference.


Time Services Measurements

Provider	IPv	$\#\mbox{IP}$ Addr.	RPKI	DNSSEC	RTT mean	NTP version	NTS	Stratum
Amazon	v4	89	Yes	No	162.05 ms	v4	No	4
	v6	89	Yes	No	162.08 ms	v4	No	4
Apple	v4	51	No	No	166.54 ms	v4	No	1/2~(78%/22%)
	v6	46	No	No	168.75 ms	v4	No	1/2~(77%/23%)
Cloudflare	v4	2	Yes	Yes	$3.97 \mathrm{\ ms}$	v4	Yes	3
	v6	2	Yes	Yes	$3.95~\mathrm{ms}$	v4	Yes	3
Google	v4	4	Yes	No	$11.26~\mathrm{ms}$	v4	No	1
	v6	4	Yes	No	11.12 ms	v4	No	1
Meta	v4	5	Yes	No	23.02 ms	v4	No	1
	v6	5	Yes	No	$36.24~\mathrm{ms}$	v4	No	1
Microsoft	v4	12	Yes	No	145.65 ms	v3	No	3
	v6	0	-	_	_	_	-	-
Ubuntu	v4	4	No	No	47.45 ms	v4	Yes	2
	v6	3	No	No	31.01 ms	v4	Yes	2

Recommendations

- Providers should support NTS services and clients
 - no reasons to expose clients this way
 - Ubuntu already did it (kudos!)
- Extra features: RPKI, DNSSEC
- Microsoft has lot of work to do:
 - fix their clocks: they clocks are sometimes out-of-sync
 - adhere to RFC8633 and servers clients with more than 1 server
 - Deploy NTPv4 and NTS
- For ops: do not use Microsoft NTP client or time service
- Why many Linux distros still use timesyncd?

NTP Ecosystem

Summary

- We've looked both clients and services, and found issues at both sides
- We show that time services despite billions of clients, can have not ideal offsets
- We hope other vendors follow Ubuntu and enable NTS for all its clients

Clients report:

Time services report:

