Roll, Roll, Roll Your Root

A Comprehensive Analysis of the First Ever DNSSEC Root KSK Rollover

NLUUG Najaarsconferentie 2019 – Utrecht, 2019-11-21

Moritz Müller3,4, Matthew Thomas6, Duane Wessels6, Wes Hardaker5, Taejoong Chung2, Willem Toorop1, Roland van Rijswijk-Deij1,4

1NLnet Labs, 2Rochester Institute of Technology, 3SIDN Labs, 4University of Twente, 5USC/Information Sciences Institute, 6Verisign
Introduction

• DNSSEC brings **integrity** to the DNS

• Validators need the public key of the Root and configure it as *trust-anchor*

• In 2018, the trust-anchor was replaced (or “rolled”) for the *first time*

• The old key: **KSK-2010**

• The new key: **KSK-2017**

What are the name servers of .com?
Introduction

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as *trust-anchor*
- In 2018, the trust-anchor was replaced (or “rolled”) for the *first time*

- The old key: **KSK-2010**
- The new key: **KSK-2017**
Introduction

- DNSSEC brings integrity to the DNS
- Validators need the public key of the Root and configure it as trust-anchor
- In 2018, the trust-anchor was replaced (or “rolled”) for the first time

- The old key: KSK-2010
- The new key: KSK-2017
Introduction

• DNSSEC brings **integrity** to the DNS
• Validators need the public key of the Root and configure it as **trust-anchor**
• In 2018, the trust-anchor was replaced (or “rolled”) for the first time

• The old key: **KSK-2010**
• The new key: **KSK-2017**
Introduction

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as **trust-anchor**
- In 2018, the trust-anchor was replaced (or “rolled”) for the first time
 - The old key: **KSK-2010**
 - The new key: **KSK-2017**
Why is rolling hard?

• No key → No validation → No DNS responses
• Every validator needs to have KSK-2017, but:

 • Validators use hard-coded keys
 • Containers challenge key update
 • People tend to forget about DNS
ICANN resumes rollover process 18 Sep 2018

KSK-2017 published in Root Zone 11 Jul 2017

ICANN halts rollover process 27 Sep 2017

The Rollover 11 Oct 2018

Revocation of KSK-2010 11 Jan 2019

KSK-2010 removed from Root Zone 22 Mar 2019
Before the Rollover

I

KSK-2017 published in Root Zone 11 Jul 2017

II

STOP

III

ICANN halts rollover process 27 Sep 2017

IV

ICANN resumes rollover process 18 Sep 2018

V

VI
Resolver Telemetry: RFC 8145

- The goal: estimating how many validators had KSK-2017
- The solution: resolvers signal to the root which keys they trust
- Data from ICANN from A, B, and J root
- Signals from up to 100,000 validators daily
Uptake of KSK-2017

Fraction of signallers

- KSK-2010
- KSK-2017

RFC 5011 add hold-down

KSK-2017 added to zone

May Jun Jul Aug Sep Oct

0.00 0.25 0.50 0.75 1.00

STOP
Uptake of KSK-2017

8% of resolvers don’t have KSK-2017

Fraction of signallers

KSK-2010
KSK-2017

RFC 5011 add hold-down

KSK-2017 added to zone

May Jun Jul Aug Sep Oct
Zooming in on resolvers that only have KSK-2010

• Lots of RFC 8145 sources sent only one signal
• Many sent only a few queries

<table>
<thead>
<tr>
<th>Query</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ta-4a5c</td>
<td>15,447</td>
</tr>
<tr>
<td>.</td>
<td>9,182</td>
</tr>
<tr>
<td>VPN domain</td>
<td>3,156</td>
</tr>
<tr>
<td>VPN alternate domain</td>
<td>415</td>
</tr>
<tr>
<td>_sip._udp.otherdomain</td>
<td>86</td>
</tr>
</tbody>
</table>

Domains, queried by resolvers
Zooming in on resolvers that only have KSK-2010

Fraction of RFC 8145 signallers

IPv4
IPv6

Actual rollover

Feb '18 Apr '18 Jun '18 Aug '18 Oct '18 Dec '18
Zooming in on resolvers that only have KSK-2010
Takeaways from *before* the Rollover

- **Most** validators correctly picked up KSK-2017
- But **one single application** can influence the trust-anchor signal
- Validation in applications might become more common
 - Influence on telemetry
During the Rollover

I STOP II III IV (The Rollover 11 Oct 2018) V VI
The User’s Perspective: RIPE Atlas

• The goal: measuring how users perceive the rollover
• The approach: Measuring with all RIPE Atlas probes once per hour
 a) If they have cached KSK-2017
 b) If they validate correctly

• We observed **35,719 resolver addresses** in **3,141 ASes** and correlated failing resolvers with DNSKEY queries with DITL data
Activating KSK-2017

% VPs with Key Cached

Oct 11−16:00h
Oct 12−00:00h
Oct 12−08:00h
Oct 12−16:00h
Oct 13−00:00h
Oct 13−08:00h
Oct 13−16:00h
Oct 14−00:00h
Oct 14−08:00h
Oct 14−16:00h

KSK−2010
KSK−2017

I
STOP
IV
V
VI
Activating KSK-2017

Large resolvers start validating with KSK-2017

% VPs with Key Cached

Oct 11–16:00h
Oct 12–00:00h
Oct 12–08:00h
Oct 12–16:00h
Oct 13–00:00h
Oct 13–08:00h
Oct 13–16:00h
Oct 14–00:00h
Oct 14–08:00h
Oct 14–16:00h

KSK–2010
KSK–2017

Large resolvers start validating with KSK-2017

% VPs with Key Cached

Oct 11–16:00h
Oct 12–00:00h
Oct 12–08:00h
Oct 12–16:00h
Oct 13–00:00h
Oct 13–08:00h
Oct 13–16:00h
Oct 14–00:00h
Oct 14–08:00h
Oct 14–16:00h

KSK–2010
KSK–2017
Reaction to Validation Failures

35,719 unique resolver sources in RIPE Atlas

34,002 always secure or always insecure

Always secure or always insecure
Reaction to Validation Failures

35,719 unique resolver sources in RIPE Atlas

34,002 always secure or always insecure

970 secure before, bogus after rollover

747 secure before, insecure after rollover
Reaction to Validation Failures

35,719 unique resolver sources in RIPE Atlas

- 34,002 always secure or always insecure
- 970 secure before, bogus after rollover
- 747 secure before, insecure after rollover
- 519 sending excess DNSKEY queries
- 359 sending 1.5x more DNSKEY queries after rollover
Reaction to Validation Failures

35,719 unique resolver sources in RIPE Atlas

- **34,002** always secure or always insecure
- **970** secure before, bogus after rollover
- **747** secure before, insecure after rollover
- **519** sending excess DNSKEY queries
- **359** sending 1.5x more DNSKEY queries after rollover
- **218** fixed within 1h
- **138** fixed after 1h
- **3** never fixed
Broadband restored to Eir customers after outage

Company says problem with DNS server led to outage across the country

EIR Outage - Was it DNS(SEC)?

Massive increase after the rollover

Queries per day

- Aug '18
- Sep '18
- Oct '18
- Nov '18
- Dec '18
- Jan '19
- Feb '19
- Mar '19
- Apr '19

STOP
EIR Outage - Was it DNS(SEC)?

Queries per day

Aug '18 Sep '18 Oct '18 Nov '18 Dec '18 Jan '19 Feb '19 Mar '19 Apr '19

Rollover Revocation Removal

Mysterious bump after removal of KSK-2010
Takeaways from *during* the Rollover

- Few resolvers had **serious problems**
- The ones that had problems **recovered fast**
- Less than **0.01%** of the resolvers we monitored experienced problems
After the Rollover

Revocation of KSK-2010
11 Jan 2019

KSK-2010 removed from Root Zone
22 Mar 2019
Increase in DNSKEY queries

Queries per day

Aug '18 Sep '18 Oct '18 Nov '18 Dec '18 Jan '19 Feb '19 Mar '19 Apr '19

Rollover
Revocation
Removal

I STOP IV V VI
Increase in DNSKEY queries

Partially expected increase

0 M - 1 250 M
Q. per day

Aug '18
Sep '18
Oct '18
Nov '18
Dec '18
Jan '19
Feb '19
Mar '19
Apr '19

Rollover
Revocation
Removal

1
2
3
4
Increase in DNSKEY queries

- Very unexpected increase
- Partially expected increase

Rollover
- Nov '18

Revocation
- Feb '19

Removal
- Apr '19
Increase in DNSKEY queries

Queries per day

- **Rollover**: Partially expected increase
- **Revocation**: Very unexpected increase
- **Removal**: 7% of total query load

- Aug '18
- Sep '18
- Oct '18
- Nov '18
- Dec '18
- Jan '19
- Feb '19
- Mar '19
- Apr '19
Increase in DNSKEY queries

- **Aug '18**: Rollover
- **Nov '18**: Partially expected increase
- **Feb '19**: Revocation
- **Mar '19**: Return to load after rollover
- **Apr '19**: Removal

Very unexpected increase

7% of total query load
Increase in DNSKEY queries after revocation

Most root servers see the increase

Fraction of traffic

ZSK rollover

RFC 5011 hold–down for revocation

KSK–2010 revoked

Jan '19 Feb '19 Mar '19

0.100

0.075

0.050

0.025

0.000

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100
Increase in DNSKEY queries after revocation

Most root servers see the increase

But not all of them
Who’s behind the query floods?

• DNS CHAOS queries to sources reveal mostly older versions of BIND

• Outreach
 • A large French cloud hosting provider confirmed a source running BIND 9.8.2 on CentOS
 • Large midwestern university confirmed DNS lab exercise and provided BIND config
Reproducing Key Floods with BIND

- Conditions for reproducing DNSKEY floods with BIND:
 - DNSSEC managed keys contains KSK-2010, but not KSK-2017
 - The dnssec-enable flag was set to false
 - The dnssec-validation flag was unset, leaving it in its default state of “yes.”

![Graph depicting query distribution over experiments](graph.png)
Reproducing Key Floods with BIND

- Conditions for reproducing DNSKEY floods with BIND:
 - DNSSEC managed keys contains KSK-2010, but not KSK-2017
 - The dnssec-enable flag was set to false
 - The dnssec-validation flag was unset, leaving it in its default state of “yes.”

Bursts occur only occasionally
Resolver Telemetry: RFC 8509 “Root Sentinel”

The return of KSK-2010
Resolver Telemetry: The return of KSK-2010

Fraction of signallers

Rollover Revocation Removal

KSK-2010 KSK-2017

I STOP IV V VI
Takeaways from after the Rollover

• **No one** expected the massive flood of DNSKEY queries
• Trust anchor management comes in **different shapes and colors**
• Shipping trust anchors with software has **long-lasting effects**
Discussion
Do we need to improve telemetry?

- RFC 8145 and RFC 8509 are useful but should be improved
 - Allowing to identify the true source of a signal
 - Provide an estimate for how many users a signal represents
Do we need to improve telemetry?

- RFC 8145 and RFC 8509 are useful but should be improved
 - Allowing to identify the true source of a signal
 - Provide an estimate for how many users a signal represents

Do we need to change trust anchor management?

E.g. shipping TAs centrally in OSes?
Conclusions and broader Lessons

• The rollover was a **success**
• **Independent analysis** and measurements on the internet are valuable
• Telemetry must be kept in mind **at an early stage** of protocol development
• Trust anchors should be **managed centrally**
Conclusions and broader Lessons

• The rollover was a **success**
• **Independent analysis** and measurements on the internet are valuable
• Telemetry must be kept in mind **at an early stage** of protocol development
• Trust anchors should be **managed centrally**

Questions, suggestions, comments?

Paper available at
https://bit.ly/2OxKWc3

Data available at
https://github.com/SIDN/RollRollRollYourRoot

Contact
Moritz Müller | moritz.muller@sidn.nl | sidnlabs.nl
Bonus Slides
Failure Modes

Failing and then Insecure
Validation Failure Modes

Failing and then Insecure

Failing and then Recover
Validation Failure Modes

- Failing and then Insecure
- Failing and then Recover
- Failing and then Bogus