Roll, Roll, Roll Your Root

A Comprehensive Analysis of the First Ever DNSSEC Root KSK Rollover

NLUUG Najaarsconferentie 2019 – Utrecht, 2019-11-21

Moritz Müller^{3,4}, Matthew Thomas⁶, Duane Wessels⁶, Wes Hardaker⁵, Taejoong Chung², Willem Toorop¹, Roland van Rijswijk-Deij^{1,4}

¹NLnet Labs, ²Rochester Institute of Technology, ³SIDN Labs, ⁴University of Twente, ⁵USC/Information Sciences Institute, ⁶Verisign

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as *trust-anchor*
- In 2018, the trust-anchor was replaced (or "rolled") for the first time
- The old key: KSK-2010
- The new key: KSK-2017

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as *trust-anchor*
- In 2018, the trust-anchor was replaced (or "rolled") for the first time
- The old key: KSK-2010
- The new key: KSK-2017

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as *trust-anchor*
- In 2018, the trust-anchor was replaced (or "rolled") for the first time
- The old key: KSK-2010
- The new key: KSK-2017

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as *trust-anchor*
- In 2018, the trust-anchor was replaced (or "rolled") for the first time
- The old key: KSK-2010
- The new key: KSK-2017

- DNSSEC brings **integrity** to the DNS
- Validators need the public key of the Root and configure it as *trust-anchor*
- In 2018, the trust-anchor was replaced (or "rolled") for the first time
- The old key: KSK-2010
- The new key: KSK-2017

Why is rolling hard?

- No key \rightarrow No validation \rightarrow No DNS responses
- Every validator needs to have KSK-2017, but:
 - Validators use hard-coded keys
 - Containers challenge key update
 - People tend to forget about DNS

Photo by Icons8 team on Unsplash

Timeline

Before the Rollover

Resolver Telemetry: RFC 8145

- The goal: estimating how many validators had KSK-2017
- The solution: resolvers signal to the root which keys they trust
- Data from ICANN from A, B, and J root

STOP

• Signals from up to 100,000 validators daily

Uptake of KSK-2017

STOP

0

ALLWAY

IV

VI

V

0

14

Zooming in on resolvers that only have KSK-2010

- Lots of RFC 8145 sources sent only one signal
- Many sent only a few queries

STOP

Query	Count
_ta-4a5c	15,447
•	9,182
VPN domain	3,156
VPN alternate domain	415
_sipudp.otherdomain	86

Domains, queried by resolvers

Zooming in on resolvers that only have KSK-2010

Zooming in on resolvers that only have KSK-2010

Takeaways from *before* the Rollover

- Most validators correctly picked up KSK-2017
- But one single application can influence the trust-anchor signal
- Validation in applications might become more common
 - \rightarrow Influence on telemetry

STOP

During the Rollover

The User's Perspective: RIPE Atlas

- The goal: measuring how users perceive the rollover
- The approach: Measuring with all RIPE Atlas probes once per hour
 - a) If they have cached KSK-2017
 - b) If they validate correctly

STOP

 We observed 35,719 resolver addresses in 3,141 ASes and correlated failing resolvers with DNSKEY queries with DITL data

Activating KSK-2017

Broadband restored to Eir customers after outage

Company says problem with DNS server led to outage across the country

② Sat, Oct 13, 2018, 21:23 Updated: Sun, Oct 14, 2018, 07:55

File photograph: Maxwells

STOP

https://www.irishtimes.com/business/technology/broadband-restored-to-eir-customers-after-outage-1.3663004

EIR Outage - Was it DNS(SEC)?

EIR Outage - Was it DNS(SEC)?

Takeaways from *during* the Rollover

- Few resolvers had serious problems
- The ones that had problems recovered fast
- Less than 0.01% of the resolvers we monitored experienced problems

After the Rollover

Increase in DNSKEY queries

Increase in DNSKEY queries

Increase in DNSKEY queries after revocation

Increase in DNSKEY queries after revocation

Who's behind the query floods?

• DNS CHAOS queries to sources reveal mostly older versions of BIND

STOP

- Outreach
 - A large French cloud hosting provider confirmed a source running BIND 9.8.2 on CentOS
 - Large midwestern university confirmed DNS lab exercise and provided BIND config

Reproducing Key Floods with BIND

- Conditions for reproducing DNSKEY floods with BIND:
 - DNSSEC managed keys contains KSK-2010, but not KSK-2017
 - The dnssec-enable flag was set to false
 - The dnssec-validation flag was unset, leaving it in its default state of "yes."

Reproducing Key Floods with BIND

- Conditions for reproducing DNSKEY floods with BIND:
 - DNSSEC managed keys contains KSK-2010, but not KSK-2017
 - The dnssec-enable flag was set to false
 - The dnssec-validation flag was unset, leaving it in its default state of "yes."

Resolver Telemetry: RFC 8509 "Root Sentinel"

Resolver Telemetry: RFC 8509 "Root Sentinel"

Resolver Telemetry: The return of KSK-2010

Takeaways from *after* the Rollover

- No one expected the massive flood of DNSKEY queries
- Trust anchor management comes in **different shapes and colors**
- Shipping trust anchors with software has **long-lasting effects**

Discussion

Do we need to improve telemetry?

- RFC 8145 and RFC 8509 are useful but should be improved
 - Allowing to identify the true source of a signal
 - Provide an estimate for how many users a signal represents

46

Do we need to improve telemetry?

- RFC 8145 and RFC 8509 are useful but should be improved
 - Allowing to identify the true source of a signal
 - Provide an estimate for how many users a signal represents

Do we need to change trust anchor management?

E.g. shipping TAs centrally in OSes?

Photo by Chunlea Ju on Unsplash

Conclusions and broader Lessons

- The rollover was a success
- Independent analysis and measurements on the internet are valuable
- Telemetry must be kept in mind at an early stage of protocol development
- Trust anchors should be managed centrally

Conclusions and broader Lessons

- The rollover was a success
- Independent analysis and measurements on the internet are valuable
- Telemetry must be kept in mind at an early stage of protocol development
- Trust anchors should be managed centrally

Paper available at

https://bit.ly/20xKWc3

Data available at

https://github.com/SIDN/RollRollYourRoot

Questions, suggestions, comments?

Contact

Moritz Müller | moritz.muller@sidn.nl | sidnlabs.nl

Bonus Slides

Failure Modes

Failing and $\begin{array}{c} 60\\40\\20\\0\end{array}$

Validation Failure Modes

STOP

Validation Failure Modes

