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Abstract—The rapid growth of the Internet has raised con-
cerns about the carbon emissions linked to data transmission.
Autonomous Systems (ASes), which make inter-domain routing
decisions, influence how traffic moves through the network and,
indirectly, where emissions are generated. Although carbon-
aware routing is gaining interest, limited visibility into emission
sources remains a key challenge. In this paper, we present GRASS
(Green Ranking of Autonomous SystemS), a framework for
estimating the CO2 intensity of ASes based on their geographic
distribution and the carbon efficiency of regional electricity
grids. GRASS combines geolocation, routing, and carbon data
to infer probabilistic location profiles and compute a CO2
intensity score for each AS. Using GRASS, we analyze emission
patterns across AS popularity tiers, and customer cone sizes,
and assess the carbon intensity of AS-to-AS links based on
associated organizations. Our results show that a small number
of structurally central ASes and links account for a large fraction
of total Internet-related emissions. We propose a novel approach
to assessing the CO2 intensity of ASes and their interconnections,
offering insights that enable targeted interventions for greener
network operations and routing policies.

I. INTRODUCTION

The global expansion of Internet connectivity has brought
significant economic and societal benefits. However, it has also
contributed to a rising environmental footprint. In 2020, the
Information and Communication Technology (ICT) sector ac-
counted for approximately 4% of global electricity consump-
tion and about 1.4% of total greenhouse gas (GHG) emissions
[1]. Within the broader ICT sector, network infrastructure
plays a key role in enabling global Internet connectivity.
As networks continue to grow, the processes required for
data transmission involve increasingly complex computations,
which in turn lead to higher energy consumption. Routing
protocols, like BGP, select paths based on various factors,
including operator policies and business agreements, but not
on carbon footprint. This raises the question: are the most
efficient paths also the most sustainable? Recent works have
started exploring carbon-aware routing [2]–[5], yet how emis-
sions are distributed across the Internet’s topology remains
unclear. In this paper, we introduce GRASS (Green Ranking
of Autonomous SystemS), a framework for estimating and
comparing the CO2 intensity of ASes. The core premise
of GRASS is that emissions from network operations are
location-dependent: infrastructure such as routers, switches,
and interconnection points consumes electricity locally, and
the carbon intensity of that electricity varies significantly
across countries due to differences in how power is generated.
Despite this strong geographic dependency, detailed data on
the physical footprint of ASes is often lacking. To the best of

our knowledge, this is the first study to address this challenge
by integrating multiple complementary data sources to infer
the likely geographic footprint of ASes and their interconnec-
tions (ASes links). GRASS combines facility-level information
(e.g., from PeeringDB) with routing-based geolocation (e.g.,
from RIPEstat and BGPStream), and links this to country-
level carbon intensity data from the Green Web Foundation.
We apply GRASS to analyze emission patterns across AS
popularity tiers, which indicate how often networks appear in
routing paths, customer cone sizes, which represent the set of
networks reachable through customer–provider links, and the
carbon intensity of AS-to-AS connections. The result includes
CO2 intensity scores for both ASes and their interconnections,
capturing how emissions vary across the Internet.

Our contributions are: (i) We introduce the first green
ranking of ASes and their interconnections at Internet scale.
(ii) We show how CO2 intensity varies with AS popular-
ity tiers, customer cone sizes, and AS-to-AS links based
on associated organizations. (iii) We release an interac-
tive website presenting per-AS and per-link CO2 intensity
scores to support future research on carbon-aware routing:
https://ut-dacs.github.io/GRASS/. All data and code are pub-
licly available to support reproducibility: https://github.com/ut-
dacs/GRASS.

In addition to providing a framework that maps CO2 in-
tensity among ASes, we show that a small set of structurally
central ASes and links concentrate a large portion of estimated
network emissions, driven by their broad geographic foot-
print and structural importance in the global routing system.
Network operators, policymakers, and researchers can use
these insights to design targeted interventions, for example,
by prioritizing greener peering arrangements, rerouting traffic
through lower-emission paths.

II. RELATED WORK

Environmental sustainability in networking has gained in-
creasing attention as global data traffic and energy consump-
tion continue to grow. In response to these challenges, the
IETF GREEN Working Group [6] has recently initiated efforts
to develop standards for energy-efficient networking, focusing
on terminology, use cases, and data models to support energy-
aware operations. In addition to this, Tabaeiaghdaei et al. [3]
introduced CIRo, a carbon-aware inter-domain routing system
that leverages path-aware architectures such as SCION [7].
By forecasting and sharing carbon intensity data for inter-
domain paths, CIRo allows endpoints to select lower-emission
routes without altering core routing protocols, demonstrating
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the feasibility of edge-level carbon-aware decisions. Simi-
larly, Sutherland and Phillips proposed Low-Carb BGP [2],
a carbon-aware extension to BGP that introduces green met-
rics into routing decisions via an SDN-based control layer.
Their design avoids changes to BGP itself, instead offering
a lightweight, deployable mechanism for reducing the carbon
footprint of inter-domain routing while incentivizing operators
to improve energy performance.

El-Zahr et al. developed CATE [4], a traffic engineering
algorithm that incorporates real-time carbon intensity data
and router power models to minimize emissions within back-
bone networks. Their work demonstrates the challenges of
integrating carbon metrics into existing routing logic and
highlights the trade-offs between precision, feasibility, and
carbon savings.

Ruiz-Rivera et al. [8] examined the unintended conse-
quences of energy-saving techniques, such as shutting down
idle links, on inter-domain routing protocols. Their findings
show that such actions can trigger hot-potato routing changes
and degrade BGP stability, pointing to the need for routing-
aware energy strategies that do not compromise network
performance. Zilberman et al. [5] outlined a vision for carbon-
intelligent networking that goes beyond energy efficiency to
include full-stack, end-to-end carbon accounting. They em-
phasize the need for standardized carbon metrics, improved
visibility into energy sources, and coordinated actions across
devices, applications, and routing protocols to support mean-
ingful decarbonization of network operations.

In contrast to protocol-level solutions, our work takes a
complementary, data-driven approach by estimating AS-level
carbon footprints based on geographic presence and regional
electricity carbon intensity. This offers a macroscopic view of
network CO2 intensity values to support sustainability analysis
and inform greener infrastructure and routing strategies.

III. METHODOLOGY

To estimate the carbon intensity of ASes based on their ge-
ographic presence and the carbon efficiency of local electricity
grids, we have developed a multi-step methodology.

A. Data Collection

To capture the geographic distribution of AS infrastructure,
we adopted a methodology inspired by a previous study [9]
and employed two complementary datasets: PeeringDB [10]
and RIPEStat [11]. We subsequently integrated the inferred ge-
olocation profiles with country-level carbon intensity metrics
from the Green Web Foundation (GWF) [12] and inter-domain
routing data from BGPStream [13].

1) PeeringDB: We used a snapshot of the PeeringDB
database from May 1, 2025, to map the geographic presence
of ASes. PeeringDB [10] is a community-maintained database
that records the interconnection infrastructure of ASes, includ-
ing the facilities (colocation centers or PoPs) and Internet
Exchange Points (IXPs) where they are present. This data
serves as a useful proxy for identifying where an AS maintains
physical or peering infrastructure. We consider each instance

of an AS appearing in a country, whether through a facility
or an IXP, as a distinct indicator of physical infrastructure
presence. We aggregate these signals to create a per-AS list
of observed countries, and then normalize these lists into per-
centage distributions. The result is a probabilistic geographic
footprint for each AS, where each country is associated with
a share of the AS’s observed infrastructure presence. This
facility- and IXP-level view reflects physical interconnections
rather than logical routing, helping identify edge and metro
deployments often missed by IP-based data. We assume that
every recorded presence indicates meaningful infrastructure
and not merely a placeholder or administrative registration.

2) RIPEstat: While infrastructure-level presence shows
where ASes operate, it can be incomplete, especially for
smaller networks or those not thoroughly documented in Peer-
ingDB. To address this, we used a complementary geolocation
method based on IP prefix advertisements from RIPEstat [11],
which integrates MaxMind’s GeoLite database [14]. For each
AS, we retrieved all announced IPv4 and IPv6 prefixes and
mapped them to countries using MaxMind’s heuristics, based
on IP allocation records, geocoding, and user localization data.

This process results in a set of country-level associations
for each AS, where each country is assigned a coverage per-
centage, representing the fraction of an AS’s total advertised
prefixes believed to originate in that country. These percent-
ages serve as probabilistic indicators of presence, reflecting
the AS logical footprint in address space utilization, similar to
the facility-based model.

The output is a per-AS distribution across countries, normal-
ized so the country-level values sum to 100%. This provides
a network-centric view of geolocation, capturing not where
an AS has infrastructure, but where its address space is
advertised and likely routed from. This method complements
the PeeringDB-based approach in several ways. First, it can
detect presence in countries where the AS is active but not
listed in facility databases. It also captures edge deployments
and content delivery strategies that rely on localized IPs, even
when the infrastructure is outsourced. Finally, it introduces a
routing-oriented view of presence, reflecting how ASes engage
with global Internet topology.

Together, the prefix-based and facility-based methods form
a more comprehensive model of AS geography, enabling
better carbon impact estimates by capturing both physical
infrastructure and logical network behavior.

3) Green Web Foundation: To estimate the environmental
impact of AS operations, we used country-level carbon inten-
sity data from the GWF [12], which has received attention
in recent years [15], [16]. The GWF reports average CO2
emissions per kilowatt-hour (gCO2/kWh), calculated using
official energy statistics and national generation mixes. We
used the average carbon intensity dataset, which assigns each
country a single value based on its typical energy sources
(e.g., coal, gas, hydro, solar). We downloaded the most recent
update available as of May 2025. We matched each country
in our geolocation dataset, whether sourced from PeeringDB
or RIPEstat, to its corresponding CO2 intensity value. We
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excluded countries not covered by the GWF dataset to avoid
introducing uncertainty. By aligning geographic presence with
CO2 intensity factors, we translated each AS’s international
footprint into a carbon-relevant signal.

4) BGPStream: To complement geolocation data and assess
the real-time routing behavior, we also incorporated data from
BGPStream [13] for May 1, 2025. BGPStream offers access
to real-time and historical BGP routing updates, allowing for
a dynamic understanding of how ASes announce their prefixes
and how routes propagate across the global Internet. This data
is critical for inferring the logical paths that traffic might take
by measuring link frequency. It can help validate or refine the
probabilistic geographic footprints derived from PeeringDB
and RIPEstat, offering insights into the broader topological
context relevant to carbon intensity.

B. Mapping CO2 Intensity to ASes

After establishing country-level presence profiles for each
AS and retrieving corresponding national carbon intensity
data, we computed a composite carbon footprint score for
each AS. This score reflects the average CO2 intensity of the
electricity grids in the countries where the AS operates.

1) Weighted CO2 Estimation: We computed each AS’s car-
bon intensity as a weighted average of national CO2 intensities,
where the weights correspond to the AS’s normalized presence
across countries. Formally, for a given AS:

CO2(AS) =
∑
c∈C

wc · Ic

where:
• C is the set of countries in which the AS is active,
• wc is the normalized weight of the AS’s presence in

country c,
• Ic is the average carbon intensity of electricity in coun-

try c, measured in grams of CO2 per kilowatt-hour
(gCO2/kWh), as provided by the Green Web Foundation.

This assumes an AS’s carbon impact is proportional to its
geographic footprint and the carbon intensity of the grids it
relies on.

2) Handling Incomplete Data: When an AS was present
in countries without carbon intensity data, we excluded those
countries and renormalized the remaining weights to maintain
consistency. This prevented missing data from skewing results
or causing underestimation.

This process yields a single CO2 intensity value per AS,
reflecting the environmental efficiency of its infrastructure
locations. Lower values indicate presence in cleaner-energy
countries, while higher values suggest reliance on more
carbon-intensive grids.

C. Mapping CO2 Intensity to AS Links

Following the methodology of mapping CO2 intensity to
ASes, we estimated CO2 emissions associated with AS-level
links, enabling more detailed analysis of end-to-end path
footprints. We compute a weighted average of national CO2
intensities when the two ASes are present in one or more of

the same countries, weighting each country by their combined
presence. If they have no countries in common but are each
present in exactly one country, we use a simple average. The
resulting intensity is then scaled by how often the link appears
in observed paths. Formally, for a link between AS1 and AS2:

CO2(Link) =


(∑

c∈C

(
w

(1)
c + w

(2)
c

)
· Ic

)
∑
c∈C

(
w

(1)
c + w

(2)
c

)
 ·N

where:
• C is the set of countries where both AS1 and AS2 are

present,
• w

(1)
c and w

(2)
c are the normalized presence weights of

AS1 and AS2 in country c,
• Ic is the carbon intensity of electricity in country c, ex-

pressed in grams of CO2 per kilowatt-hour (gCO2/kWh),
• N is the number of times the link AS1–AS2 appears in

observed potential AS paths (i.e., usage factor).
We included only links where the two ASes shared at least
one country of presence, or where both ASes were active
in exactly one country (even if different). This approach
ensures that emissions are attributed to plausible points of
interconnection. We assigned each link a usage factor N ,
representing how often the AS pair appeared consecutively
in BGP paths, reflecting its relevance in real-world routing.

To compute the usage factor N , we parsed BGP RIB
snapshots from the RIPE RIS project dated May 1, 2025. 1

Our pipeline retained only AS paths that met the following
criteria: the prefix was not listed in the fullbogons files, AS
path prepending was removed, and paths with loops were
discarded. We then matched prefixes against the RouteViews
Prefix-to-AS mappings dataset2, which provides daily IPv4
and IPv6 associations between IP prefixes and origin ASes.
This ensured that only paths with valid, known origin ASes
were considered.

IV. ANALYSIS

In this section, we examine how carbon intensity varies
across ASes and their links, estimating CO2 emissions based
on geographic presence. We relate these values to popularity,
customer cone size, and interconnections to reveal structural
patterns in Internet sustainability.

A. CO2 Intensity by AS Popularity

To investigate whether the popularity of an AS correlates
with its carbon footprint, we combined our CO2 intensity
estimates with AS popularity data. To measure AS popularity,
we followed the approach of Naab et al. [17], who aggregate
domain-based top lists (e.g., Tranco, Umbrella) to network
prefixes and ASes. We resolve each domain to one or more IP
addresses, which we then map to prefixes and AS numbers.

1https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/

2https://www.caida.org/catalog/datasets/routeviews-prefix2as/
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Fig. 1. Distribution of CO2 intensity across AS popularity groups. While
the median remains stable, broader groups include more low-intensity ASes,
increasing the spread.

Fig. 2. Log-log plot of total CO2 intensity values aggregated over each AS’s
customer cone versus cone size. Each point represents an individual AS from
the CAIDA May 2025 dataset.

We apply a Zipf distribution to assign popularity weights
based on domain ranks, and aggregate these weights at the
AS level. This approach gives us a weighted list of ASes
that reflects their prominence based on the popularity of
hosted domains. By correlating these metrics, we investigate to
what extent more prominent ASes are associated with higher
environmental impact. Towards that end, we group ASes by
popularity into four tiers: Top 100, Top 1.000, Top 10.000, and
the full set of ASes. For each group, we plot the distribution
of CO2 intensity using violin plots, as shown in Figure 1.
The results show that median CO2 values are consistent across
popularity groups, suggesting that highly popular ASes do not
necessarily emit more carbon than less popular ones. As group
size increases, the distribution becomes broader and more
variable, with a higher concentration of low-emitting ASes.

B. CO2 Intensity by Customer Cone Size

To examine how carbon intensity scales per the structural
reach of an AS, we analyze the relationship between total
CO2 output and customer cone size. The customer cone of an
AS, as defined in prior work [18], consists of all ASes that
can be reached through provider-to-customer links, recursively.
This metric serves as a proxy for the AS’s influence and its
potential role in traffic transit. Using CAIDA’s AS relationship
dataset (May 2025)3, we compute per-AS customer cones and

3https://publicdata.caida.org/datasets/as-relationships/

aggregate the estimated CO2 intensity of all ASes within each
cone, including the root. The result is a metric of total cone
CO2, a structural measure of an AS’s indirect carbon footprint.
Figure 2 shows the relationship between customer cone size
and total cone CO2 on a log-log scale. The distribution
reveals a clear superlinear trend, consistent with a power-law
relationship. A linear regression in log-log space (red line)
yields a slope greater than one, indicating that CO2 increases
faster than cone size. This indicates that as the customer cone
grows, total intensity increases at a faster-than-linear rate.

This behavior likely reflects topological centralization: large
ASes serve many customers and accumulate higher indirect
emissions due to their central role in the transit hierarchy.
Moreover, variance among small and medium cone sizes
suggests heterogeneity in AS operational profiles, possibly
driven by differences in energy mix, infrastructure density,
or functional role. These results indicate that a small set of
structurally central ASes account for a large share of the Inter-
net’s carbon footprint. As such, targeted mitigation strategies,
such as prioritizing greener energy sources, integrating carbon
intensity into route selection policies, or applying carbon-
aware traffic engineering, could therefore deliver significant
global impact.

C. CO2 Intensity per AS Link

To understand how carbon intensity varies across the In-
ternet infrastructure, we analyze CO2 intensity at the level
of individual AS-to-AS links, as detailed in Section III. This
metric estimates the carbon emissions associated with data
exchanged between two ASes and is normalized by dividing
each link’s CO2 intensity by the total across all links, enabling
direct comparison. Figure 3 shows the cumulative share of
CO2 emissions as a function of the fraction of AS-to-AS links,
ranked from most to least impactful. The distribution of CO2
emissions is highly concentrated: the top 10% of AS-to-AS
links are responsible for about 93.65% of total emissions,
as shown in the CDF. This highlights a small but critical
subset of links that dominate Internet-related emissions. To
further investigate this concentration, Figure 4 shows the
CO2 intensity between the 10 organizations whose AS-level

Fig. 3. Cumulative distribution of CO2 emissions across AS-to-AS links,
ordered from most to least impactful. The distribution is highly skewed: the
top 10% of links account for approximately 93.65% of total emissions.
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Fig. 4. CO2 Intensity of Traffic Between Top 10 Network Organizations.

interconnections generate the highest total emissions. Each cell
aggregates the emissions of all interconnections between ASes
affiliated with the corresponding source and destination orga-
nizations. Darker shades indicate higher intensity, while a ‘×’
marks the absence of observed interconnection. The heatmap
reveals that most organization pairs maintain relatively low-
impact links, while a few exhibit high CO2 intensity. Notably,
interconnections involving Saudi Telecom Company JSC, NTT
America, and Level 3 Parent appear among the most carbon-
intensive. These links may reflect transcontinental routes, high-
throughput exchanges, or routing through carbon-heavy infras-
tructure. This aligns with the CDF analysis because emissions
are not evenly distributed but concentrated in a small number
of organizational relationships. This concentration suggests
that targeted interventions on key interconnections could yield
substantial reductions in the Internet’s overall carbon footprint.

V. CONCLUSION

We introduced GRASS (Green Ranking of Autonomous
SystemS), a novel framework that estimates the carbon in-
tensity of ASes based on their geographic distribution and
the carbon efficiency of regional electricity grids. GRASS
integrates facility records and IP geolocation, and maps these
locations to national carbon intensity data to assign carbon
scores to ASes. This allows us to assign carbon scores that
reflect the carbon footprint of both AS operations and their
interconnections. Our results highlight the unequal distribution
of estimated network emissions, with a small number of ASes
and interconnections responsible for a significant share of
the Internet’s carbon footprint. This concentration suggests
that targeted interventions, such as adopting greener practices
among major ASes, could have a considerable impact. The ef-
fect could be further amplified through regulatory support and

economic incentives that encourage environmentally conscious
routing decisions. Moreover, it is essential to avoid unintended
routing consequences, such as congestion or instability from
overusing low-emission paths, that could undermine sustain-
ability goals. We also provide a public website with estimated
CO2 emissions of ASes and their potential interconnections,
making all values openly accessible.

Future work may include comparing our BGP-based esti-
mates with traffic data from IXPs, modeling cross-country AS
links, and using more fine-grained carbon intensity data.
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