Routing security
Joeri de Ruiter
Operator of the .nl TLD

• Stichting Internet Domeinregistratie Nederland (SIDN)

• Critical infrastructure services
 • Lookup IP address of a domain name (almost every interaction)
 • Registration of all .nl domain names
 • Manage fault-tolerant and distributed infrastructure

• Increase the value of the Internet in the Netherlands and elsewhere
 • Enable safe and novel use of the Internet
 • Improve the security and resilience of the Internet itself
SIDN Labs

- Goal: advance operational Internet security and resilience through world-class measurement-based research and technology development

- Research challenges: core Internet systems and Internet evolution

- Daily work: help operational teams, write open source software, analyze vast amounts of data, run experiments, write academic papers, work with universities
Today’s topics

• BGP
 • RPKI
 • BGPsec
• Starting from scratch: SCION
Autonomous systems

- The internet is a combination of networks
- These networks are called autonomous systems (AS)
 - Controlled by a single entity
 - One or more IP prefixes
 - Identified by a unique number (ASN)
- ASes communicate routing information to their neighbours (peers)
 - Which IP prefixes can be reached through them
Border Gateway Protocol (BGP)

- BGP-4, RFC 4271
- Protocol to communicate routing information between ASes
- Announcements
 - Prefix, AS path, next hop
- Glues the Internet together
- Border routers contain forwarding tables specifying where to forward packets to depending on the prefix (using longest prefix match)
Company Website:
http://www.surf.nl/en

Country of Origin:
Netherlands

Internet Exchanges: 5

Prefixes Originated (all): 97
Prefixes Originated (v4): 94
Prefixes Originated (v6): 3

Prefixes Announced (all): 214
Prefixes Announced (v4): 190
Prefixes Announced (v6): 24

BGP Peers Observed (all): 1,133
BGP Peers Observed (v4): 1,111
BGP Peers Observed (v6): 781

IPs Originated (v4): 6,194,944
AS Paths Observed (v4): 96,741
AS Paths Observed (v6): 20,522

Average AS Path Length (all): 4.225
Average AS Path Length (v4): 4.297
Average AS Path Length (v6): 3.885
BGP example

SURFnet AS1103

KPN AS1136

AS-path: AS1140
Prefix: 193.176.144.0/24
Next-hop: 193.239.116.38

80.249.208.89

80.249.208.89

SIDN AS1140

AS-path: AS1136, AS1140
Prefix: 193.176.144.0/24
Next-hop: 80.249.208.89

193.239.116.38
BGP example

AS-path: AS1136, AS1140
Prefix: 193.176.144.0/24
Next-hop: 80.249.208.89

AS-path: AS6939, AS6830, AS1140
Prefix: 193.176.144.0/24
Next-hop: 206.41.106.27
BGP security

- Plaintext and unauthenticated
- Hijacking or interception of prefixes
 - Announce longer prefix or shorter path

How 3ve’s BGP hijackers eluded the Internet—and made $29M

3ve used addresses of unsuspecting owners—like the US Air Force.

DAN GOODIN - 12/21/2018, 6:30 PM

Nimania Pakistan causes 2-hour outage

Nimania reports that Pakistan Telecom was responsible for erroneous Internet Protocols.
Routing security

• What properties do we want?
• Origin authentication
 • You can only announce prefixes that are assigned to you
• Path authentication
 • The complete path to the origin is verifiable
Resource PKI (RPKI)

- Provides origin authentication using certificates to assign prefixes
- Deployment started in 2011 and described in RFC 6480
- Makes use of existing standards
 - E.g. X.509 certificates, extended with attributes to include IP prefixes
- Root CAs called Trust Anchor
- Leaf certificates called End-Entity Certificates
- Route Origin Authorization (ROA)
 - Bind prefix to AS
 - Signed by owner of the prefix
- One-to-one mapping between End-Entity Certificate and ROA
RPKI adoption – Europe

Unique ASNs in ROAs for RIPE NCC
Source: https://certification-stats.ripe.net/
Origin authentication

- Described in RFC 6493
- Cryptographic verification performed by RPKI Cache (local or at service provider)
 - Download records from repository (e.g. RIRs such as RIPE)
 - Verify chain, including assigned resources
 - Assigned resources should be a subset of the parent’s resources
- Verification against BGP announcement performed by routers
 - Router retrieves stripped ROAs from RPKI Cache
 - Match BGP announcements against published ROAs
 - Valid / Invalid / NotFound
 - Verification results used in policy
BGP example

ROA
193.176.144.0/24 originates from AS1140

AS-path: AS1140
Prefix: 193.176.144.0/24
Next-hop: 193.239.116.38

AS-path: AS1136, AS1140
Prefix: 193.176.144.0/24
Next-hop: 80.249.208.89

KPN
AS1136

Attacker Inc
AS9999

AS-path: AS9999
Prefix: 193.176.144.0/24

Surfnet
AS1103

SIDN
AS1140

RPKI repository
Path authentication

- BGPsec: verification of complete path in announcement
 - RFC 8205
- Uses RPKI
- AS-Path authenticated using signature in BGPsec-Path
- Every AS adds signature over previous signature and newly added path information
 - Including next AS
BGP example

KPN
- **AS-path:** AS1140
- **Prefix:** 193.176.144.0/24
- **Next-hop:** 193.239.116.38
- **BGPsec:** Sign(k_{AS1140}, (193.176.144.0/24, AS1140, AS1136))

SURFnet
- **AS-path:** AS1136, AS1140
- **Prefix:** 193.176.144.0/24
- **Next-hop:** 80.249.208.89
- **BGPsec:** Sign(k_{AS1136}, (AS1136, AS1103, Sign(k_{AS1140}, (193.176.144.0/24, AS1140, AS1136)))))

SIDN
- **AS-path:** AS1140
- **Prefix:** None
- **Next-hop:** None
- **BGPsec:** None
Starting from scratch

• Current Internet is a combination of patches
• Security is merely an afterthought
• Can we do better if we start (almost) from scratch?
• Scalability, Control, and Isolation On Next-generation Networks
SCION

• New internet architecture
• Research at ETH Zürich
• Scalability and security through Isolation Domains (ISDs)
 • Group of autonomous systems
 • E.g. per country or jurisdiction
• Routes authenticated both in control and data plane
SCION – Isolation Domains

- PKI organised per ISD
- ISD core: ASes managing the ISD
- Core AS: AS part of the ISD core
- Hierarchical control plane
 - Inter-ISD control plane
 - Intra-ISD control plane

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017
SCION – Autonomous systems

• Every interface that connects to neighbouring AS is assigned a unique identifier
• Several services run within AS
 • Beacon server
 • Path server
 • Certificate server
SCION – Path discovery

- Inter-ISD
 - Performed by core ASes
 - PCBs flooded similar as with BGP
 - Less ASes involved (only core)
- Intra-ISD
 - Downstream multi-path flooding
SCION – Intra-ISD path discovery

• Path Construction Beacons (PCBs) sent downstream using multi-path flooding
 • Initiated by core nodes
 • Extended and forwarded by receiving ASes
 • Add incoming and outgoing interface and optional peerings
• Eventually all nodes know how ISD core can be reached
• AS registers preferred down-segments (path from core to AS) with path server in the core
• Preferred up-segments registered with local path server
SCION – Intra-ISD path discovery

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017
SCION – Intra-ISD path discovery

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017
SCION – Path Construction Beacons

- Path Construction Beacons are signed by every AS along the path
 - Can be verified within ISD
- Hop-fields (HF) included that can be used to later select paths
 - Contain MAC computed using hop-field key
 - Only processed locally
SCION – Path Construction Beacons

Source: SCION: A Secure Internet Architecture, Perrig et al., 2017
SCION – Path lookup

- Path construction performed by end hosts
- Request route to (ISD, AS) from local path server
- Local path server replies with
 - Up-path segments to local ISD core
 - Down-path segment in remote ISD from core to destination AS
 - Core-path segments needed to connect up-path and down-path segments
- End hosts combines segments to determine path
SCION – Path lookup

- Path server caches path segments
- If path to AS in remote ISD is not present in cache:
 - Request core- and down-path segments from local core AS
 - Core AS requests down-path segments from core AS in remote ISD
 - Up-, core- and down-segments returned to end host
SCION - Routing

- Path information included in packet headers
 - Corresponding hop-field included
 - No forwarding information necessary at routers
 - Packet-carried forwarding state (PCFS)
- Sender selects the path
 - Possible to use multiple paths
- Recipient address no longer used to route between autonomous systems
 - Only used by the destination AS
SCION - Routing

Source: SCION: A Secure Internet Architecture, Perrig et al., 2017
SCION - Security

• Trust within ISD
 • Compromise is kept locally \rightarrow root key can only be used to compute certificates for local ISD

• Authenticated paths
 • Authentication in data plane
 • No path hijacking
 • No spoofing \rightarrow no reflection attacks
SCION - PKI

- Control-plane
 - Comparable to RPKI
 - Short-lived certificates for ASes
- Name-resolution
 - Comparable to DNSSEC
 - Typically ISD will delegate name resolution to TLDs
- End-entity
 - Comparable to TLS
 - Certificates need to be signed by multiple CAs and registered at publicly verifiable log server
SCION – Source and path validation

• So far no validation that data was not injected and actually followed the desired path

• Extensions to SCION to achieve this:
 • OriginValidation, packet originates from source
 • PathTrace, packet followed indicated trace
 • Origin and Path Trace (OPT)
SCION - OriginValidation

- Source shares a symmetric key with every AS on the path
- Additional information in header
 - DataHash: hash over payload
 - SessionID: session identifier picked by source
 - List of OV values: MAC over DataHash with key shared between source and AS or destination
- Every intermediate AS and the destination verify its corresponding OV value
 - Overhead linear in number of ASes on the path
<table>
<thead>
<tr>
<th>SCION - OriginValidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataHash = Hash(payload)</td>
</tr>
<tr>
<td>SessionID</td>
</tr>
<tr>
<td>$OV_1 = MAC(K_{S,AS1}, DataHash)$</td>
</tr>
<tr>
<td>$OV_2 = MAC(K_{S,AS2}, DataHash)$</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>$OV_D = MAC(K_{S,D}, DataHash)$</td>
</tr>
</tbody>
</table>
SCION - PathTrace

• Source and destination share a symmetric key with every AS on the path
• Additional information in header
 • DataHash: hash over payload
 • SessionID: session identifier picked by source
 • Path Validation Field (PVF): MAC over DataHash and previous value of PVF
• Every intermediate AS updates the PVF value
 • Overhead constant
• Destination can compute MAC over data hash and final PVF for source to verify path
• Verification can be performed later: retroactive-PathTrace
DataHash = Hash(payload)

SessionID

PVF = MAC(K_s, DataHash)
SCION - PathTrace

DataHash = Hash(payload)

SessionID

PVF = MAC(K_{AS1}, DataHash | MAC(K_S, DataHash))
SCION in practice

- Open source implementation available
- Can be combined with existing Internet (e.g. through gateways)
- SCIONLab: international research network
 - Open for everyone to connect to
- Used in practice by banks, government and hospitals
- At SIDN
 - Permanent infrastructure node (AS) connected to SCIONLab
 - Implementation of SCION on open networking hardware
Summary

• BGP provides no secure by default
 • Hijacking and interception possible
• Origin authentication provided by RPKI and ROAs
• BGPsec introduces path authentication
• SCION introduces a new architecture that provides security by design
 • E.g. authenticated routing in data plane
Thanks for your attention!

joeri.deruiter@sidn.nl
www.sidnlabs.nl