Routing security

Joeri de Ruiter

Operator of the .nl TLD

- Stichting Internet Domeinregistratie Nederland (SIDN)
- Critical infrastructure services
 - Lookup IP address of a domain name (almost every interaction)
 - Registration of all .nl domain names
 - Manage fault-tolerant and distributed infrastructure
- Increase the value of the Internet in the Netherlands and elsewhere
 - Enable safe and novel use of the Internet
 - Improve the security and resilience of the Internet itself

SIDN Labs

- Goal: advance operational Internet security and resilience through world-class measurement-based research and technology development
- Research challenges: core Internet systems and Internet evolution
- Daily work: help operational teams, write open source software, analyze vast amounts of data, run experiments, write academic papers, work with universities

Today's topics

- BGP
 - RPKI
 - BGPsec
- Starting from scratch: SCION

Autonomous systems

- The internet is a combination of networks
- These network are called autonomous systems (AS)
 - Controlled by a single entity
 - One or more IP prefixes
 - Identified by a unique number (ASN)
- ASes communicate routing information to their neighbours (peers)
 - Which IP prefixes can be reached through them

Border Gateway Protocol (BGP)

- BGP-4, RFC 4271
- Protocol to communicate routing information between ASes
- Announcements
 - Prefix, AS path, next hop
- Glues the Internet together
- Border routers contain forwarding tables specifying where to forward packets to depending on the prefix (using longest prefix match)

HURRICANE ELECTRIC

Average AS Path Length (all): 4.225 Average AS Path Length (v4): 4.297 Average AS Path Length (v6): 3.885

AS1103 SURFnet by

Quick Links BGP Toolkit Home **BGP Prefix Report BGP** Peer Report Exchange Report **Bogon Routes** World Report Multi Origin Routes **DNS Report** Top Host Report Internet Statistics Looking Glass Network Tools App Free IPv6 Tunnel IPv6 Certification IPv6 Progress **Going Native** Contact Us

Graph v4 Prefixes v4 Peers v4 Peers v6 Whois IRR IX AS Info Graph v6 Prefixes v6 Company Website: http://www.surf.nl/en Country of Origin: Netherlands Internet Exchanges: 5 STREET, August A. Min SURFmarket Prefixes Originated (all): 97 SURF Prefixes Originated (v4): 94 Prefixes Originated (v6): 3 Samen aanlagen van vernieuwir Prefixes Announced (all): 214 SURF is de ICT-coöperatie van Prefixes Announced (v4): 190 onderwijs en onderzoek Prefixes Announced (v6): 24 BGP Peers Observed (all): 1,133 BGP Peers Observed (v4): 1,111 BGP Peers Observed (v6): 781 IPs Originated (v4): 6,194,944 AS Paths Observed (v4): 96,741 AS Paths Observed (v6): 20,522

BGP example

BGP example

BGP security

- Plaintext and unauthenticated
- Hijacking or interception of prefixes
 - Announce longer prefix or shorter path

Routing security

- What properties do we want?
- Origin authentication
 - You can only announce prefixes that are assigned to you
- Path authentication
 - The complete path to the origin is verifiable

Resource PKI (RPKI)

- Provides origin authentication using certificates to assign prefixes
- Deployment started in 2011 and described in RFC 6480
- Makes use of existing standards
 - E.g. X.509 certificates, extended with attributes to include IP prefixes
- Root CAs called Trust Anchor
- Leaf certificates called End-Entity Certificates
- Route Origin Authorization (ROA)
 - Bind prefix to AS
 - Signed by owner of the prefix
- One-to-one mapping between End-Entity Certificate and ROA

RPKI hierarchy

RPKI adoption – Europe

Unique ASNs in ROAs for RIPE NCC Source: https://certification-stats.ripe.net/

Origin authentication

- Described in RFC 6493
- Cryptographic verification performed by RPKI Cache (local or at service provider)
 - Download records from repository (e.g. RIRs such as RIPE)
 - Verify chain, including assigned resources
 - Assigned resources should be a subset of the parent's resources
- Verification against BGP announcement performed by routers
 - Router retrieves stripped ROAs from RPKI Cache
 - Match BGP announcements against published ROAs
 - Valid / Invalid / NotFound
 - Verification results used in policy

Path authentication

- BGPsec: verification of complete path in announcement
 - RFC 8205
- Uses RPKI
- AS-Path authenticated using signature in BGPsec-Path
- Every AS adds signature over previous signature and newly added path information
 - Including next AS

BGP example

Starting from scratch

- Current Internet is a combination of patches
- Security is merely an afterthought
- Can we do better if we start (almost) from scratch?
- Scalability, Control, and Isolation On Next-generation Networks

SCION

- New internet architecture
- Research at ETH Zürich
- Scalability and security through Isolation Domains (ISDs)
 - Group of autonomous systems
 - E.g. per country or jurisdiction
- Routes authenticated both in control and data plane

SCION – Isolation Domains

- PKI organised per ISD
- ISD core: ASes managing the ISD
- Core AS: AS part of the ISD core
- Hierarchical control plane
 - Inter-ISD control plane
 - Intra-ISD control plane

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017

SCION – Autonomous systems

- Every interface that connects to neighbouring AS is assigned a unique identifier
- Several services run within AS
 - Beacon server
 - Path server
 - Certificate server

SCION – Path discovery

- Inter-ISD
 - Performed by core ASes
 - PCBs flooded similar as with BGP
 - Less ASes involved (only core)
- Intra-ISD
 - Downstream multi-path flooding

SCION – Intra-ISD path discovery

- Path Construction Beacons (PCBs) sent downstream using multipath flooding
 - Initialised by core nodes
 - Extended and forwarded by receiving ASes
 - Add incoming and outgoing interface and optional peerings
- Eventually all nodes know how ISD core can be reached
- AS registers preferred down-segments (path from core to AS) with path server in the core
- Preferred up-segments registered with local path server

SCION – Intra-ISD path discovery

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017

SCION – Intra-ISD path discovery

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017

SCION – Path Construction Beacons

- Path Construction Beacons are signed by every AS along the path
 - Can be verified within ISD
- Hop-fields (HF) included that can be used to later select paths
 - Contain MAC computed using hop-field key
 - Only processed locally

SCION – Path Construction Beacons

Source: SCION: A Secure Internet Architecture, Perrig et al., 2017

SCION – Path lookup

- Path construction performed by end hosts
- Request route to (ISD, AS) from local path server
- Local path server replies with
 - Up-path segments to local ISD core
 - Down-path segment in remote ISD from core to destination AS
 - Core-path segments needed to connect up-path and down-path segments
- End hosts combines segments to determine path

SCION – Path lookup

- Path server caches path segments
- If path to AS in remote ISD is not present in cache:
 - Request core- and down-path segments from local core AS
 - Core AS requests down-path segments from core AS in remote ISD
 - Up-, core- and down-segments returned to end host

SCION - Routing

- Path information included in packet headers
 - Corresponding hop-field included
 - No forwarding information necessary at routers
 - Packet-carried forwarding state (PCFS)
- Sender selects the path
 - Possible to use multiple paths
- Recipient address no longer used to route between autonomous systems
 - Only used by the destination AS

SCION - Routing

Source: SCION: A Secure Internet Architecture, Perrig et al., 2017

SCION - Security

- Trust within ISD
 - Compromise is kept locally → root key can only be used to compute certificates for local ISD
- Authenticated paths
 - Authentication in data plane
 - No path hijacking
 - No spoofing \rightarrow no reflection attacks

SCION - PKI

- Control-plane
 - Comparable to RPKI
 - Short-lived certificates for ASes
- Name-resolution
 - Comparable to DNSSEC
 - Typically ISD will delegate name resolution to TLDs
- End-entity
 - Comparable to TLS
 - Certificates need to be signed by multiple CAs and registered at publicly verifiable log server

SCION – Source and path validation

- So far no validation that data was not injected and actually followed the desired path
- Extensions to SCION to achieve this:
 - OriginValidation, packet originates from source
 - PathTrace, packet followed indicated trace
 - Origin and Path Trace (OPT)

SCION - OriginValidation

- Source shares a symmetric key with every AS on the path
- Additional information in header
 - DataHash: hash over payload
 - SessionID: session identifier picked by source
 - List of OV values: MAC over DataHash with key shared between source and AS or destination
- Every intermediate AS and the destination verify its corresponding OV value
 - Overhead linear in number of ASes on the path

SCION - OriginValidation

DataHash = Hash(payload)

SessionID

OV₁ = MAC(K_{S,AS1}, DataHash)

OV₂ = MAC(K_{S,AS2}, DataHash)

OV_D = MAC(K_{S,D}, DataHash)

...

SCION - PathTrace

- Source and destination share a symmetric key with every AS on the path
- Additional information in header
 - DataHash: hash over payload
 - SessionID: session identifier picked by source
 - Path Validation Field (PVF): MAC over DataHash and previous value of PVF
- Every intermediate AS updates the PVF value
 - Overhead constant
- Destination can compute MAC over data hash and final PVF for source to verify path
- Verification can be performed later: retroactive-PathTrace

SCION - PathTrace

SCION - PathTrace

SessionID

PVF = MAC(K_{AS1}, DataHash | MAC(K_s, DataHash))

SCION in practice

- Open source implementation available
- Can be combined with existing Internet (e.g. through gateways)
- SCIONLab: international research network
 - Open for everyone to connect to
- Used in practice by banks, government and hospitals
- At SIDN
 - Permanent infrastructure node (AS) connected to SCIONLab
 - Implementation of SCION on open networking hardware

- BGP provides no secure by default
 - Hijacking and interception possible
- Origin authentication provided by RPKI and ROAs
- BGPsec introduces path authentication
- SCION introduces a new architecture that provides security by design
 - E.g. authenticated routing in data plane

Thanks for your attention!

joeri.deruiter@sidn.nl www.sidnlabs.nl

