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Abstract

The Border Gateway Protocol is at the core of the internet, distributing routing
information between networks. However, it was not designed with security in mind,
enabling malicious networks to hijack traffic. The Resource Public Key Infrastructure
(RPKI) has emerged as the primary tool to secure BGP routing, supporting mecha-
nisms like Route Origin Validation (ROV) that make attacks more difficult, and are
increasingly being adopted by network operators. However, the RPKI currently relies
on RSA signatures, which are vulnerable to attacks by powerful quantum computers.
While much research is done on post-quantum cryptography (PQC) and its application
in protocols like TLS and DNSSEC, no such work has been done for the RPKI. This
thesis lays the groundwork for a migration to post-quantum cryptography in the
RPKI.

We show that the RPKI with insecure cryptography can be abused for severe attacks
that are even more effective than original BGP attacks. This highlights the importance
of migrating to post-quantum cryptography. We also find that the communication
between CAs is an attractive target for quantum attackers, and that the RPKI relies
on several related protocols that must be secured as well.

We then evaluate which post-quantum signatures can be a suitable replacement for RSA
in the RPKI, primarily by proposing a method to estimate the performance impact of
a given post-quantum scheme. A hybrid with Falcon-512 as post-quantum component
emerges as a promising candidate, though alternatives can perform similarly.

Next, we introduce the novel null scheme: a method to avoid redundant signatures
and public keys that are present in every signed object in the RPKI. This can reduce
the size and verification time of the RPKI (e.g. reducing the median ROA size
from 4354 to 2295 bytes when using a hybrid of Falcon-512 and RSA-2048), largely
making up for the performance cost of switching to post-quantum signatures. This is
particularly useful when introduced together with post-quantum signatures, sharing a
single algorithm rollover.

Finally, we argue that the existing algorithm agility procedure (RFC6916) is impractical,
and propose a simpler mixed-tree migration that (1) is not necessarily top-down, (2)
requires no globally coordinated milestone days, and (3) uses simple key rollovers for
individual CAs using the familiar RFC6489 key rollover procedure. In this approach,
updated relying party software and trust anchors are distributed as soon as possible,
while actual CA migrations can be delayed without problem.

Our proof-of-concept implementation in Krill and Routinator demonstrates the fea-
sibility of this approach. We publish this implementation to provide a starting
point for further research, including performance measurements and interoperability
testing.
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Chapter 1

Introduction

The internet’s core routing infrastructure relies on the Border Gateway Protocol (BGP),
a protocol fundamental to directing traffic between autonomous systems (ASes) across
the global Internet. BGP enables these autonomous systems — networks operated by
Internet Service Providers and other organizations — to exchange routing information.
Despite its crucial role, BGP was not designed with security in mind and relies on
“good faith” between AS operators. This jeopardizes the availability, integrity, and
confidentiality of the Internet, both through human error (misconfiguration) and
malicious actors that intentionally redirect traffic to be dropped, eavesdropped on, or
manipulated.

The Resource Public Key Infrastructure (RPKI) has emerged as the primary tool to
address these security concerns. The RPKI is a decentralized database that allows
legitimate holders of internet resources (such as IP addresses) to make cryptographically
verifiable statements about how routing should take place. These statements are in
turn used to make secure routing decisions. The prime use case of the RPKI is Route
Origin Validation (ROV), which is increasingly being adopted by network operators.
Currently, it is configured to protect 56% of all IPv4 BGP originations against common
misconfigurations and some attacks [50].1 Other complementary techniques exist that
offer further protection against more sophisticated attacks, including Autonomous
System Provider Authorization (ASPA) and BGPsec (see section 2.2). While ASPA
is approaching standardization and should soon begin to see deployment, the older
BGPsec is not (yet) used in practice. This thesis focuses on the RPKI infrastructure
itself—which underpins all these mechanisms. BGPsec in particular also uses different
cryptographic signatures, outside the RPKI, but these are not in the scope of this
thesis.

The RPKI currently uses RSA signatures [61, RFC7935] that are vulnerable to quantum
attacks [66]. As quantum computing advances, the threat of quantum-enabled attacks
on attempts to secure BGP routing is becoming increasingly real.

While the need for migration between cryptographic algorithms has been considered
for the RPKI (for example in a published but controversial algorithm agility procedure:
[RFC6916]), such transitions take time and coordination. Hence, it is necessary that the
community starts investigating these transitions sooner rather than later. Taking into
account the recent standardization of Post-Quantum Cryptography (PQC) algorithms
by the National Institute of Standards and Technology (NIST) — which organized
a process to evaluate and standardize quantum-resistant cryptographic algorithms —
the time is right to start considering the adoption of PQC into the RPKI.

Introducing post-quantum cryptography in existing protocols can be challenging, due
to both the performance impact of slower post-quantum algorithms and the difficulty
of deploying changes. Previous efforts in transitioning cryptographic protocols to

1At the time of writing, 56% of IPv4 BGP prefix originations are ROV-Valid (this number is
steadily increasing), meaning that networks can filter out some attacks with ROV that target such
prefixes. Not all networks do so, but only a fraction of networks needs to perform ROV filtering for
ROV to be effective.
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quantum-resistant alternatives have been seen in domains such as TLS and DNSSEC
[16, 49], but no significant work has been done for the RPKI.

Although RPKI ROV has not been fully adopted yet (so the current state of affairs
is not yet as secure as one would hope), the potential impact of a quantum-enabled
attack on RPKI is significant, similar to that of attacks on e.g. DNSSEC. Furthermore,
BGP hijacking attacks in the past have typically involved well-resourced adversaries.
Given that access to quantum computers is likely to be limited to sophisticated
adversaries, the alignment between existing BGP threat actors and plausible early
quantum adversaries makes quantum attacks especially relevant to the RPKI.

1.1 Contribution

In this thesis, we lay the groundwork for a transition to quantum-resistant cryptography
in the RPKI. After presenting the necessary background information and briefly
discussing related work in chapter 2, we cover the following topics:

• We first evaluate what threat quantum computing poses to the current RPKI.
Chapter 3 shows what a quantum-enabled attack on the RPKI could look like,
what impact it could have, and what parts of the RPKI are currently vulnerable.

• Next, we look for a suitable post-quantum replacement for RSA in chapter 4.
We determine the requirements, model the expected performance impact, and
apply this methodology to several candidate algorithms. Finally, we suggest
standardizing multiple algorithms at the same time, which turns out to be
potentially useful for a variety of reasons.

• As a special instance of using specialized algorithms for different use cases within
the RPKI, chapter 5 defines a ‘null scheme’ that can replace a normal signature
scheme in so-called one-time-use end-entity certificates. This proposal removes
redundancy from every signed object in the RPKI, which can largely make up
for the performance cost of switching to larger post-quantum signatures.

• The possible steps for a migration between signature algorithms are analyzed in
chapter 6. While [RFC6916] already defines a procedure for algorithm agility,
we consider it too complicated operationally. Therefore, we propose a simpler
transition, closely based on a proposal coined by Brian Dickson ([19, 20]) during
discussions about the drafts leading up to [RFC6916].

• Based on our proposed migration plan, we implement a proof of concept in
chapter 7. We adapt the popular validator software Routinator and CA software
Krill to support a post-quantum signature algorithm. Using this implementation,
we then show that our transition procedure is feasible with minimal changes to
existing software.

Finally, we reflect on our findings and provide actionable recommendations for the
RPKI community in chapter 8.
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Chapter 2

Preliminaries

2.1 Border Gateway Protocol

The internet can be viewed as a network of networks, where each network — called
an Autonomous System (AS) — manages its internal routing independently. An AS
represents a network under a single administrative control, such as an internet service
provider, a large enterprise, or a content provider. Each AS is uniquely identified by a
globally unique Autonomous System Number (ASN), often written as e.g. AS64501,
which allows it to be distinctly recognized in global routing.

While internal routing within an AS can be handled by a variety of protocols, commu-
nication between different autonomous systems is orchestrated by the Border Gateway
Protocol (BGP) version 4 [RFC4271]. In this thesis, we focus exclusively on external
BGP—as opposed to internal BGP, one of multiple ways for routers within an AS
to exchange information—and we simply refer to ‘BGP’. BGP enables the exchange
of routing information between these autonomous systems, allowing global internet
connectivity.

BGP is a protocol that allows networks to exchange routing information in the form
of route announcements, which describe paths to reach certain addresses. These
announcements consist of:

• A prefix, which represents a range of IP addresses that can be reached through
the route.

• An AS path, which is a sequence of autonomous systems that the route would
traverse.

Prefixes are typically written as e.g. a.b.c.0/24, where the final part /24 indicates
the length of the prefix in bits. That is, the prefix a.b.c.0/24 contains the 256
addresses from a.b.c.0 up to a.b.c.255, and the prefix a.b.0.0/16 contains the
65536 addresses from a.b.0.0 up to a.b.255.255. So, prefixes are hierarchical, and
one prefix can be more specific than another if it is longer. a.b.c.0/24 is more specific
(and a subset of) the shorter a.b.0.0/16.

BGP speakers use these route announcements to build a routing table, which is used
to determine the preferred path to a destination. Each BGP speaker receives many
announcements, and shares only the most preferred route for each prefix. Route
preference is determined primarily by two factors: more specific prefixes are preferred,
and among routes to the same prefix, those with the shortest AS path are chosen.
When a most preferred route is found, a BGP speaker will share it with all of its
neighbors, adding its own AS number to the AS path. This way, good routes are
propagated throughout the internet, and sub-optimal routes are discarded. A toy
example of BGP’s operation is shown in fig. 2.1.
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AS
64501

AS
64502

AS
64503

a.b.c.0/24 AS64501

a.b.c.0/24 
AS64501

a.b.c.0/24 
AS64503 AS64501

AS
64504

a.b.0.0/16 
AS64504

Routing table:
a.b.c.0/24 AS64501
a.b.0.0/16 AS64504

a.b.c.0/24

a.b.0.0/16
(but not a.b.c.0/24)

Selected route for
a.b.c.d

Figure 2.1: An example of BGP operation from the perspective of AS64502, looking
for a route to a.b.c.d. AS64502 receives 3 matching announcements. The one from
AS64501 wins with prefix length 24 and only 1 hop. AS64503’s announcement is
discarded because it has more hops. AS64504’s announcement is not discarded, but
not used for a.b.c.d because a more specific route is known.

2.2 BGP security

The Border Gateway Protocol fundamentally operates on the assumption that all
autonomous systems are honest and trustworthy. There is no built-in mechanism to
verify anything claimed in a BGP announcement, so an AS can lie by claiming to own
(originate) a prefix that it does not, or by making up a fake AS path, that it never
actually received from its neighbors. This makes it easy for traffic to be redirected in an
undesirable way, both due to accidental misconfiguration and deliberate attacks.

We show several examples, with AS numbers AS64500-64505 that are from a range
reserved for documentation. The misbehaving network is always AS64500 , and is
highlighted in red and in italics for clarity.

Figure 2.2 shows two ways by which a malicious AS could hijack traffic. In 2.2a,
AS64500 announces a.b.c.0/24 AS64500 , lying about owning the prefix. Conse-
quently, from the perspective of AS64501, AS64500 has the shortest path at only
a single hop. When AS64501 sends its traffic destined for e.g. a.b.c.d towards
AS64500 , AS64500 can then choose to impersonate the legitimate destination, drop
the traffic, or forward it to the legitimate destination while eavesdropping on it.

In 2.2b, a different approach is used where AS64500 does not lie about the number
of steps in the path, but about the length of the prefix. AS64500 announces a more
specific subset (/25) of the original prefix. In this case, the distance between the
malicious AS and its victims (AS64501) does not matter: a more-specific route should
be preferred regardless of its AS path length. On the other hand, a /25 announcement
is suspiciously specific, so it will often be ignored in practice, and the legitimate
origin AS64503 can protect against this by announcing two /25’s instead of a single
/24.

BGP hijacking is not merely a theoretical concern; it has repeatedly impacted internet
operations with real-world consequences. Some notable incidents include:

• In 2008, Pakistan Telecom, in an attempt at censoring nationally, accidentally
leaked announcements for YouTube’s address space outside of Pakistan. These
announcements were propagated by ASes worldwide. This caused global traffic
for YouTube to be routed towards Pakistan, making YouTube unavailable from
most of the world for several hours [53].
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(a) BGP hijack by illegitimately originating a prefix. This results in
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everywhere.

AS
64503

AS
64501

AS
64502

a.b.c.0/24 
AS64503

a.b.c.0/24 
AS64502 AS64503

Routing table:
a.b.c.0/25 AS64500
a.b.c.0/24 AS64502

a.b.c.0/24

AS
65400

a.b.c.0/25 
AS64500 AS65402 AS64503 a.b.c.0/24 

AS64502 AS64503

(b) BGP hijack by announcing a more specific path to the legitimate
origin. Here, the path length does not matter, as the more specific
prefix should always be used.

Figure 2.2: Examples of BGP hijacks.

• In 2018, attackers hijacked Amazon’s Route 53 DNS service to redirect cryptocur-
rency users to a phishing site, stealing approximately $150 000 in cryptocurrency
[67].

To mitigate these risks, many security mechanisms have been proposed that can make
attacks harder to perform, and prevent misconfiguration from having widespread
consequences. The Internet Routing Registry (IRR) is an early effort that established
a distributed database where network operators can register their routing policies.
While still widely used, IRR suffers from incomplete and sometimes inaccurate or
outdated data.

Later, more robust cryptographically verifiable solutions based on the Resource Public
Key Infrastructure (RPKI) have emerged. These include Route Origin Validation
(ROV), which prevents unauthorized origin announcements, Autonomous System
Provider Authorization (ASPA), which considers AS relationships in paths, and
BGPsec, which provides comprehensive path validation.

These RPKI-based mechanisms are slowly but steadily being adopted by network
operators, often in combination with filtering based on the IRR.

2.2.1 Resource Public Key Infrastructure

Each of the security mechanisms discussed here relies on the RPKI: a hierarchical
system that allows an entity to verifiably assert that it is the legitimate holder of a set
of IP addresses or an AS number [RFC6480].

The allocation of IP prefixes and ASNs is managed by the Internet Assigned Numbers
Authority (IANA), which delegates these resources to five Regional Internet Registries
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(RIRs) such as RIPE NCC for Europe and Russia. These RIRs in turn allocate
resources—optionally through National or Local Internet Registries (NIRs or LIRs)
or ISPs—to the final resource holders, such as ISPs or companies. The RPKI system
is built on top of this existing hierarchy, consisting of certificates signed by a higher
level authority (e.g. an RIR) on a public key of a lower level authority (e.g. an ISP),
indicating the allocated resources.

Using a chain of these certificates, each resource holder can authoritatively make
statements about the resources they hold, by publishing a signed object to the RPKI.
The content of these signed objects depends on the specific security mechanism, such
as ROAs or ASPAs discussed in the following sections. The validity of a signed object
comes from an end-entity (EE) certificate: a certificate on a public key that is used
only once to sign an RPKI object. The end-entity certificate is included with a signed
object and serves to allow revocation of individual objects with existing revocation
mechanisms, which would not be possible if signed objects were signed directly by a
resource holder’s CA keys.

2.2.1.1 Publication structure

The publication of objects in the RPKI happens through repositories. A repository is
a location where RPKI objects of one or more resource holders are made accessible to
Relying Parties (RPs). Each resource holder has a CA certificate that contains a URI
pointing to its publication point. In practice, CAs often share a repository hosted
by their parent — for example, an ISP might use publication infrastructure provided
by their RIR rather than hosting their own. This is good for performance and saves
resource holders the burden of hosting their own repository.

Relying parties (or validators) periodically download objects from all repositories using
either rsync or the RPKI Repository Delta Protocol (RRDP) [RFC8182], maintaining
a local cache of the entire RPKI. The validators use this cache to verify the chain
of certificates from trust anchors to each signed object. We discuss the publication
structure and its security implications in more detail in section 3.3.

2.2.2 Route Origin Validation

The first mechanism to partially secure BGP is Route Origin Validation (ROV), which
provides a way to authorize an AS to originate a prefix. This is done by publishing a
[RFC9582] Route Origin Authorization (ROA) object in the RPKI, which states that
a certain prefix is allowed to be originated by a certain AS.

Such a ROA consists of:

• The ASN that is allowed to originate the prefix(es).

• One or more prefixes, which is the range of IP addresses that the ROA applies
to.

• For each prefix, a maxLength, indicating the longest sub-prefix that the ASN
is allowed to announce. This is often denoted as e.g. -23 in a.b.0.0/22-23,
meaning that announcements for a.b.0.0/22, a.b.0.0/23, and a.b.2.0/23

are allowed, but a.b.0.0/24 is not. If the maxLength is not larger than the
legitimate announcements an AS makes, this mitigates attacks like in fig. 2.2b.1

When a BGP speaker receives a route announcement, it can check if the origin AS is
allowed to originate the prefix by looking for a corresponding ROA in the RPKI. If there

1In that example, a ROA limiting the prefix length to 24 could prevent the attack, although
AS64500 could still announce a /24 with a short path, to attract traffic from nearby victim ASes.
ASes that are topologically further away from AS64500 would still prefer the legitimate route, as
honest victim ASes in between would make the path to AS64500 longer than the best legitimate
route.
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exists a ROA with a matching prefix, maxLength, and ASN, the route announcement
is considered ROV-Valid.2 Otherwise, there might be a ROA for the prefix (or a less
specific prefix that contains it) but that does not authorize the ASN or prefix length.
In that case, the announcement is considered ROV-Invalid, and should probably not
be used [RFC6483, RFC6811]. If there is no matching ROA at all, the route is ROV-
NotFound. The practice of preferring ROV-Valid announcements over ROV-NotFound
and ROV-NotFound over ROV-Invalid ones is what actually provides security. The
fallback to ROV-NotFound is an attractive feature:

• It enables gradual adoption: ROV filtering affects only announcements for prefixes
whose holders have opted in by publishing ROAs. Others are ROV-NotFound
and are not affected.

• If (part of) the RPKI becomes unavailable for some reason, at first validators will
keep functioning with the latest known state of the RPKI. Only once ROAs start
to expire, do announcements start to fall back to ROV-NotFound. This is a safe
failure mode, as BGP routing can continue normally with the last known state
of the RPKI, or later with everything becoming ROV-NotFound. Unavailability
of the RPKI should not make any destinations unroutable that could be reached
before the outage.3

Furthermore, the barrier for adoption as resource holder is low, as it is easy to create
and publish ROAs, and resource holders can benefit from ROV filtering even if they
don’t perform the filtering themselves: ROV is effective even if only a small fraction of
autonomous systems do it, especially if these are well-connected ones, such as transit
providers. For example, when a transit provider performs ROV filtering, a customer
that is only connected to the provider will inherit the provider’s filtering automatically
[42].

2.2.2.1 Security provided by ROV

ROV effectively prevents unauthorized origin announcements such as fig. 2.2a: an AS
cannot successfully claim to originate a prefix that is protected by a ROA for a different
AS. Such announcements would be ROV-Invalid and filtered by ROV-performing ASes.
By setting appropriate maxLength values as recommended in [RFC9319], ROV can
also prevent more-specific prefix hijacks as in fig. 2.2b.

However, ROV only validates the origin AS, not the entire AS path. While this is very
effective in preventing accidental misconfiguration from propagating throughout the
internet, it does not prevent some ways of performing a prefix hijack. In particular, for
a prefix a.b.c.0/24 that can only be originated by AS64503, the malicious AS64500
can simply announce a route with AS path AS64500 AS64503 to hijack traffic. This
is an ROV-Valid announcement, as AS64503 is allowed to announce the prefix, despite
AS64500 not actually having a direct connection to AS64503. Where a false origination
without ROV would trick all ASes that are closer to AS64500 than AS64503, this
prepending attack tricks only ASes that are closer to AS64500 than to the direct
neighbors of AS64503: announcing a path of 2 hops passing ROV is less effective
than direct origination that works only without ROV. Back in 2010, [23] showed that
with full ROV adoption, 13.6% of attacker-victim AS pairs are vulnerable to the
prepending attack with 2-hop announcements, compared to 34.2% that are vulnerable
to 1-hop announcements without ROV.4 Figure 2.3 shows how the prepending attack
propagates. There, AS64500 acts as if there is a direct link from AS64500 to AS64501,

2To avoid confusion with other notions of validity, we consistently use ‘ROV-Valid’, ‘ROV-Invalid’
and ‘ROV-NotFound’ to indicate the specific meaning of ’Valid’ etc. in [RFC6811].

3There are edge cases when ROAs covering a prefix exist in multiple different CAs or repositories.
See section 2.2.2.2.

4This likelihood differs depending on how well-connected attacker and victim are. Central ASes
have a much higher chance of success as attacker, as they are closer to many victims. Similarly, they
are less likely to be victims, as they are often close to the legitimate origin.
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Figure 2.3: Propagation of a hijack where AS64500 announces a path AS64500
AS64503 to pass ROV. Bold arrows indicate the path used from each AS. The path
picked by AS64505 is a matter of local preference between the two 3-hop paths it
receives.
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Figure 2.4: Example of the risk of multiple CAs making ROAs that overlap. If the
child CA Y (highlighted in red) becomes unavailable while parent X remains, RPs
may consider only the parent’s aggregate ROA, invalidating the child’s more-specific
announcement from AS64502.

even if there is not. AS64500 can attract the traffic from AS64504 and possibly
AS64505.

2.2.2.2 Risk when ancestor CAs cover a prefix

If one CA (Y) has a prefix and an AS, and publishes a ROA a.b.1.0/24-24 =>

AS64502, and an ancestor (X) also publishes a ROA authorizing a covering prefix
only to another AS, this introduces a risk. If the child CA’s ROAs about a prefix
disappear, while another CA’s ROA covering the same prefix remains, that could cause
announcements for the more-specific prefix to become ROV-Invalid. An example of
this issue is shown in fig. 2.4. There, parent CA X publishes a ROA a.b.0.0/23-23

=> AS64501, and a subordinate CA Y publishes a ROA authorizing a different ASN
to originate a more-specific prefix: a.b.1.0/24-24 => AS64502. When CA X’s
products become unavailable (due to expiration or revocation of the ROA or the CA’s
resource certificate, or a publication server outage), an RP may consider only the
ROA a.b.1.0/24-24 => AS64502, making the announcement of a.b.1.0/24 ROV-
Invalid, while it was ROV-Valid originally. If there were no other covering ROA (or
both became unavailable together, such as when they’re both in the same repository
that suffers an outage), ROV would instead ‘fail-open’, changing from ROV-Valid to
ROV-NotFound.

Accordingly, it is good practice to be careful with creating overlapping ROAs in
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multiple CAs. This is often not a big risk when resource holders use a ‘hosted CA’
offering provided by their RIR. In that case, it is very unlikely that only one of the
CAs covering a prefix will expire or become unavailable. However, if two different
publication servers are used, or if the child CA’s resource certificate expires, a problem
can occur that makes legitimate announcements ROV-Invalid.

The relying party software Routinator can detect so-called ‘unsafe VRPs’: ROA
payloads for prefixes where validation has failed for a part of the RPKI that might
contain other ROAs for the prefix.5 This can be used to ignore the covering ROAs in
such a case, or to warn the RP operator about them.

2.2.2.3 Adoption

The use of ROV can be quantified in two ways: the portion of the IP address space or
announced prefixes that is covered by ROAs, and the portion of networks that actually
perform ROV filtering.

Coverage of ROAs has steadily increased since its introduction. At the time of writing,
56% of announced IPv4 prefixes6 are ROV-Valid.

The practice of filtering out ROV-Invalid announcements is less common and harder
to measure. [42] and [34] provide an in-depth analysis of the adoption of ROV filtering.
Broadly speaking, few networks perform ROV filtering, but many networks benefit
from it nonetheless.

2.2.3 AS Provider Authorization

Autonomous System Provider Authorization is a new mechanism that is being devel-
oped to address the security issues that remain despite ROV. While ROV ensures that
prefixes are originated by authorized ASes, it cannot prevent manipulation of the rest
of the AS path, such as the prepending attack described above.

ASPA provides a way for autonomous systems to explicitly authorize their providers:
the ASes that are expected to provide transit for the AS. In BGP, an AS often has
contractual peering relationships with other ASes it is connected with, such as a
Customer-Provider relation where the customer pays the provider for transit, or a
lateral peering relation where both ASes exchange traffic for one another. In the
context of ASPA, the provider (‘Provider+’ in [3]) is an AS that is expected to be the
next or previous hop of the customer in an AS path, including both transit providers
and lateral peers. When two peers both participate in ASPA, they would attest to
each other as providers.

This information can be used to check whether AS paths in a BGP announcement
are plausible: if a path contains a step from AS64500 to AS64501, and AS64501 has
authorized some ASes but not AS64500 as provider, the path is likely fraudulent.
Additionally, ASPA can ensure that a path is valley-free. A valid path must consist
of:

• An up-ramp, starting from the origin AS, going up through attested Customer-
Provider relationships where the announcement comes from the customer to the
provider.

• Then, optionally some hops for which no ASPA objects exist.

• Finally, a down-ramp, going through attested Provider-Customer relationships
with the announcement going from provider to customer.

Figure 2.5 shows an overview of a valid path. Each of the three parts can potentially
be empty. If a path is valid, that means that:

5https://routinator.docs.nlnetlabs.nl/en/v0.14.2/unsafe-vrps.html
6This makes op roughly 50% of the total announced IPv4 address space.
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Figure 2.5: ASPA verification overview.

• If a customer AS has created an ASPA, there must not be a hop from the
customer AS to any AS that is not a provider in the customer’s ASPA objects.

• An announcement cannot go from a provider down to a customer (not a lateral
peer), and then back up to another provider (that is again not a lateral peer).
This is called valley-free: a customer can not take traffic from one provider and
send it to another provider. Customers can only get traffic from their providers
if that traffic is on its way to the customer or something below the customer, as
part of the down-ramp.

2.2.3.1 Adoption

The ASPA mechanism has been under development since 2018 and is currently
approaching standardization by the IETF’s SIDROPS working group. Multiple
implementations of ASPA exist, including in widely used RPKI CA software Krill7

and the relying party software Routinator8, as well as the pilot environment of the
RIPE NCC. Because ASPA, like ROV, has a low barrier of entry for publishing and
can provide security benefits even with limited adoption, it is likely that it will start
getting adopted steadily as soon as it is standardized.

2.2.4 BGPsec

BGPsec [RFC8205] complements ROV, extending protection to the entire AS path. It
is an in-band extension to BGP that adds signatures for the complete AS path, where
each AS signs not only its own ASN but also the next AS in the path. This prevents
any form of path manipulation attack, such as that in fig. 2.3.

However, BGPsec faces significant deployment challenges. It requires substantial
computational resources for real-time signature generation and verification. Unlike
ROV and ASPA, which provide incremental security benefits during partial deployment,
BGPsec’s security guarantees largely depend on widespread adoption. Consequently,
BGPsec has seen negligible deployment in practice.

Due to this limited adoption, and BGPsec’s reliance on the RPKI, we do not consider
BGPsec in this thesis. Migrating BGPsec, which uses its own signature algorithm, to
post-quantum algorithms is challenging but left to future work. As BGPsec also relies
on the RPKI, securing the RPKI against quantum attacks is a prerequisite for doing
the same for BGPsec.

7https://github.com/NLnetLabs/krill/
8https://github.com/NLnetLabs/routinator/
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2.3 Post-quantum cryptography

In the RPKI, cryptographic algorithms are used that are expected to not be secure
against an attacker with a quantum computer. In particular, [RFC7935] (the successor
of [RFC6485]) specifies that the RPKI currently allows only RSA signatures [61]
with SHA-256 as digest algorithm.9 The security of RSA is based on the hardness
of factoring large numbers, which is known to be broken by Shor’s algorithm [66]
when a sufficiently large quantum computer is available. While no quantum computer
currently exists that can break traditional cryptography, the development of quantum
computers is progressing rapidly, and it is expected that they will be able to break
RSA and other traditional cryptographic algorithms, be it in several years or several
decades [48].

Post-Quantum Cryptography (PQC) aims to develop cryptographic algorithms that
remain secure against both classical and quantum computers. These algorithms
are based on various mathematical problems that are believed to be hard even for
quantum computers [13, 4]. The National Institute of Standards and Technology
(NIST) initiated a competition for PQC in 2016 to develop and standardize post-
quantum cryptographic algorithms.10 Authors were invited to submit their algorithms,
which were then evaluated by NIST and the cryptographic community. In 2022, three
post-quantum signature algorithms (and a key-establishment mechanism, which is
not relevant to the RPKI) were selected for standardization: Dilithium [24], Falcon
[26], and SPHINCS+ [5], that are now named ML-DSA, FN-DSA and SLH-DSA
respectively. Falcon’s final specification as FN-DSA has not been published yet, so it
is still called Falcon here.

Additionally, a second round of competition is ongoing to select additional algorithms,
that are based on different mathematical problems than the selected algorithms from
the first round (both ML-DSA and Falcon are lattice-based schemes), or that have a
performance advantage over the selected algorithms. The final selection of additional
algorithms will not take place until at least 2026 or 2027.

Beyond the stateless algorithms mentioned above, stateful signature schemes like XMSS
[RFC8391] offer strong security guarantees but require careful state management to
prevent key reuse, making them less suitable for many applications.

2.3.1 Challenges

Significant challenges exist when introducing post-quantum cryptography, that can
make it hard to deploy them in practice.

• Post-quantum signature schemes typically have much larger signatures and/or
public keys. This can hurt performance, or might even not fit in strict size limits
imposed by an application.

• Similarly, many algorithms are computationally slower than traditional algo-
rithms at key generation, signing, or verifying.

• Some post-quantum algorithms are relatively new and not as well-understood
as traditional algorithms. They have not received as much scrutiny from the
cryptographic community as traditional algorithms have, making it harder to
trust in their security.

• Replacing the algorithms used in protocols can be hard, sometimes requiring
complicated protocol changes that can take years to be widely adopted.

9As an exception, BGPsec Router Certificates use elliptic curve cryptography (which is also
vulnerable to a quantum computer) [RFC8608], but we consider this out of scope as these do not
influence security of the rest of the RPKI, and BGPsec is not (yet) widely deployed.

10https://www.nist.gov/pqcrypto
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• Finally, efficient, secure, and certified implementations of post-quantum algo-
rithms are not yet widely available. This will improve over time, but it is a
challenge for early adopters, especially in sectors where certification of crypto-
graphic components is mandatory. It is not directly clear whether certification
requirements apply to RPKI operators.

2.4 Related work

To our knowledge, this thesis is the first work on post-quantum cryptography for
the RPKI. Yet, it does not exist in a vacuum. Much related work has been done on
post-quantum cryptography and its applications, algorithm agility in the RPKI, and
RPKI measurements.

2.4.1 Post-quantum cryptography in related technology

The challenges of deploying post-quantum cryptography are not unique to the RPKI.
Significant research and standardization efforts are being made on building blocks
(X.509, algorithms, composites, etc.), that are direct prerequisites for the migration of
many systems, including the RPKI. There is also much work on various applications
of cryptography, such as TLS (with key exchange and web PKI certificates) and
DNSSEC.

Applications of post-quantum cryptography can be categorized into two groups:

• Much work is primarily concerned with confidentiality, where there is a real risk of
“store-now-decrypt-later” attacks. In such attacks, adversaries collect encrypted
data today, to decrypt later once sufficiently powerful quantum computers
become available. This is an urgent threat that has driven rapid deployment
of post-quantum key establishment mechanisms (KEMs) in protocols like TLS,
with major browsers already supporting post-quantum algorithms for session
keys.

• For authentication and integrity, the threat is less immediate since attackers
need real-time access to quantum computers to forge signatures.

For TLS, many researchers have evaluated the performance impact of using post-
quantum KEMs, focusing on confidentiality, rather than on authentication. Still,
some authors have investigated post-quantum certificates (for authentication) in TLS
specifically [69], and [68] covers the combination of post-quantum key exchange and
certificates.

Another common technology that is important for the RPKI is DNSSEC [30], where
confidentiality is not a concern. Here, the urgency of the migration is lower (being
immune to store-now-decrypt-later attacks), but strict size limits (large signatures
require expensive query retries over TCP) make for an interesting challenge. For
DNSSEC, some authors evaluate drop-in replacements for current signatures [49],
while others propose alternatives that significantly change the protocol [27].

Our work on the RPKI is another instance of an effort to make an existing application
quantum-safe. It shares similar goals and challenges with other applications, but the
RPKI also depends on the quantum-safety of related protocols, as those are, in turn,
building blocks of the RPKI.

2.4.2 Algorithm migration in the RPKI

Although post-quantum cryptography for the RPKI had not previously been studied,
there have been efforts on the broader topic of algorithm agility. When the RPKI
was being designed, the IETF was already aware of the need to have a mechanism for
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algorithm agility. This was implemented by [RFC6916]. The community has expressed
concerns about this mechanism both before it was finalized, and more recently [21, 10,
9].

A proposal [19, 20, 22] put forward during review of [RFC6916] forms the foundation
of our suggested strategy in section 6.2. Apart from that, we are not aware of other
alternative migration strategies that have been worked out in detail, but there has
been some work on related topics.

2.4.2.1 Elliptic-curve signatures

After the IETF 117 meeting in 2023, there was a conversation on the SIDROPS mailing
list about introducing ECDSA or EdDSA signatures [71]. This was mainly motivated
by their smaller sizes. As an added benefit, doing a migration already could help
prepare for a second migration towards PQC some years later.

The focus of these plans was on introducing elliptic-curve cryptography (ECC) for
the one-time key pairs11 in end-entity certificates only, not for CAs. This avoids a
large part of the complexity of a full algorithm migration as CAs needn’t replace their
resource certificates.

The details of the migration this proposal would require were not discussed. However,
the plan was explicitly to move towards a state where mixed certificates are used (ECC
in end-entity certificates and RSA elsewhere). This is incompatible with [RFC6916]
and does require RPs to be updated, even if CAs’ certificates remain unchanged.

Following the mailing list conversation, Job Snijders implemented experimental support
for validating ECDSA certificates (in a mixed-certificates setting) in rpki-client.12

That feature has not been used in practice since.

2.4.2.2 TAL and BPKI TA replacement

While not directly related to algorithm rollover, the ability to do trust anchor rollovers
— for both [RFC6490] TALs and [RFC8183] BPKI TAs — is instrumental for algorithm
rollovers. TALs are often hard-coded in relying party software, and as we will see in
section 6.4.2, BPKI TAs are also hard to replace in practice. There have been efforts
to make both of these rollovers easier.

Since the RPKI’s inception, no TALs have been introduced that are not backward
compatible with the original TALs. Four of the RIRs have each always had a single
TA key pair, and APNIC used to have five separate TALs13. During 2017, APNIC
retired four of its TALs, keeping only the one for resources it got from IANA [2]. So,
while some TALs were removed or had minor changes (such as the addition of RRDP
publication points), no real TAL key rollover has ever been performed in the real
world.

To better enable rollover of TALs, a Trust Anchor Key object was introduced in
[RFC9691], which provides an in-band mechanism to schedule a TAL replacement.
This has not been implemented in common RPKI software yet but is a promising
method.

The need for BPKI TA replacements was highlighted at IETF 115 [10], and two ideas
for a potential in-band replacement protocol were written down in [11] and [46].

2.4.3 Measurements

Measurements of the RPKI can be divided into three categories identified by [64].

11See section 4.6.3 and chapter 5.
12https://github.com/openbsd/src/commit/ec1cc732eea452b2c8e9f1282111d9cc0104e4b6
13One for resources it got from IANA, and one for resources transferred from each of the other

RIRs.

15

https://github.com/openbsd/src/commit/ec1cc732eea452b2c8e9f1282111d9cc0104e4b6


ROA measurements are concerned with monitoring the practice of creating ROAs.
This is relatively straightforward, by simply observing the content of the RPKI.
The coverage can then be combined with observations of BGP updates to
determine the fraction of BGP originations that are ROV-Valid or ROV-Unknown,
giving an indication of how many prefixes might be protected by ROV. Famously,
[50] is a real-time dashboard that presents various statistics on ROA coverage
over time.

ROV measurements try to determine how many, and which, ASes perform ROV
filtering. This is more difficult, as it is not directly visible, and ROV filtering by
one AS can have an umbrella effect on adjacent ASes. Various techniques are
proposed and compared in [60, 31, 63, 42]. ROV measurement methodologies can
also be a useful tool for monitoring during an algorithm migration, for example
in the methods we suggest in section 6.2.2 and appendix B.

RPKI resilience is about the robustness of components of the RPKI. Among others,
measurements are done on DNS resolvers used by RPs and the use of DNSSEC
in [30]. Research on the security of RP implementations began with [32]. [45]
provides an overview of more recent work on RPKI resilience. Measurements
in [38, 40] also try to identify which software is used by RPs: another useful
monitoring tool for algorithm migrations.

A fourth category can be added, that is particularly relevant for selecting post-quantum
algorithms for use in the RPKI.

RPKI performance measurements are concerned with the efficiency of the RPKI,
and how it can be improved. These insights are relevant both to estimate the
impact when post-quantum signatures are introduced and to take steps to
improve the performance, potentially compensating for the cost of post-quantum
schemes. Early measurements were done on rsync downloads [37]. More recent
measurements (on RRDP as well as other steps from the creation of a ROA
to propagation in BGP) include [25, 65, 1]. Several strategies to optimize
downloading and validation in RPs are proposed in [58], and [65, 74, 72] suggest
improvements on the CA side to reduce the RPKI size. Our chapter 5 fits among
these suggestions to improve performance.
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Chapter 3

Quantum threat to routing
security

We start by investigating what threat quantum computing poses to the security of
BGP routing. Throughout this chapter, we assume an attacker that, in contrast to the
threat model considered in the design of the RPKI ecosystem, is capable of breaking
traditional public-key cryptography.

From the perspective of a relying party (abstracting away the complexities involved in
setting up the RPKI and fetching from it), the resulting worst-case attacker model is
one with the following capabilities:

Capability 1 Forge any kind of signature used in the RPKI. This includes CA
certificates, EE certificates (and hence ROAs), as well as Certificate Revocation Lists
(CRLs) and RPKI Manifests.

This capability follows directly from the assumption that the attacker can break the
cryptographic algorithms used in the RPKI (i.e. RSA). Additionally, in section 3.3.1
we see that even if the RPKI certificate chains use only quantum-safe algorithms, some
other components of the RPKI ecosystem also need to be protected to ensure that an
attacker cannot obtain a valid certificate through other means than forgery.

Capability 2 Cause (forged) objects to be published at a repository, or otherwise end
up being validated by an RPKI Relying Party.

This capability does not necessarily result from broken cryptography. However, there
are many avenues to achieve it. In section 3.3.4 we show that this capability is
realistic.

These two capabilities encompass every ‘adverse action’ described in [RFC8211], which
lists actions that can be performed in certain scenarios but does not further evaluate
the impact of these actions.

Assuming this attacker model, we show attacks that are possible on ROV and ASPA
themselves, limiting the protection they provide, and more importantly, we also show
that using ROV while under this threat model allows for more severe attacks that would
not be possible on BGP without ROV. Next, we consider the components of the RPKI
ecosystem, identifying additional parts (on top of the RPKI’s certificates themselves)
that need to be secured against a quantum-enabled attacker to be secure.

3.1 Attacks on ROV

The attacks that are possible on ROV depend on the situation of a prefix prior to
an attack: is a prefix currently covered by a valid ROA or not? We consider these
scenarios separately and show from each scenario what an attacker can achieve.
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3.1.1 Forging a ROA for a protected prefix

Currently, most IP addresses are in a prefix for which a ROA exists. Legitimate
announcements for this prefix are ROV-Valid, and ROV-performing routers should
drop any announcement that is ROV-Invalid. For this scenario, our attacker is clearly
able to get rid of the protection offered by ROV, by forging another ROA for (part of)
the prefix, for example authorizing the attacker’s ASN and with a high maxLength.
Next, the attacker can announce a very specific route to a part of the prefix, which
will be ROV-Valid according to the forged ROA. Routers are now likely to accept this
illegitimate announcement, as it has a longer prefix than any legitimate announcements,
and is also ROV-Valid and hence probably not considered suspicious. So, for a prefix
that is covered by a ROA, simply inserting a single forged ROA is enough to make
a hijack attack likely to succeed. In particular, because a ROV-Valid announcement
is likely to be considered more trustworthy than an equally specific ROV-NotFound
announcement, the attacker’s capabilities make their hijack more likely to succeed
than a traditional hijack attempt on a prefix that is not even covered by a ROA.

3.1.2 Forging a ROA for an unprotected prefix

An even worse situation arises when a prefix is currently not covered by a ROA.
The RPKI currently does not include a ROA for the prefix, such that any BGP
announcement for a route in the prefix is ROV-NotFound, and most BGP routers
will accept these announcements if they do not have e.g. a suspiciously long prefix.
Without our attacker model, ROV simply offers no protection here because the prefix
is not covered by a ROA. However, under our attacker model, the attacker can once
again forge a ROA for the prefix that authorizes the attacker’s ASN. When only the
ROA chosen by the attacker exists, any legitimate BGP announcement for a route to
the prefix will become ROV-Invalid, whereas the attacker’s illegitimate announcements
will be ROV-Valid. This makes it very likely that a router performing ROV will accept
only the attacker’s announcements, and drop any legitimate announcements. Here,
it might also not be necessary to announce a more specific route than the legitimate
announcements, as the legitimate announcements are likely to not be considered at
all.

Mitigation Of course, a very simple mitigation exists to get from this scenario to
the slightly less severe one in section 3.1.1: simply create a ROA for the prefix. This
is a simple action that any AS should perform for their prefixes. However, the next
attack shows that with some more effort, an attacker can also prevent such a legitimate
ROA from being processed by a relying party.

3.1.3 Using revocation

The above attacks use only the publishing of a forged ROA. However, our attacker
can similarly forge a CRL that revokes legitimate ROAs. Using this, any existing
ROA can be revoked, degrading legitimate BGP announcements that were ROV-Valid
to become ROV-NotFound and — once the attacker also publishes a forged ROA —
ROV-Invalid, as shown in fig. 3.1. This attack can be done at any level in the RPKI
hierarchy (including the trust anchors), so using only a few forged CRLs, the ROAs
for large parts of the internet can be revoked.

Apart from publishing forged CRLs, which requires Capability 2, there are alternative
ways to achieve the same result:

• Simply showing that the attacker can create a forged CRL or any other signature
(even if they cannot publish it in a repository) compels the CA to revoke their
certificate (section 4.9.1 of [RFC6484]). Hence, an attacker with only Capability
1 can still disable the protection offered by ROV.
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 AS64500 => a.b.c.0/24-24

Figure 3.1: An example of using a forged ROA and revoking a legitimate ROA to
enhance a hijack. Due to the original ROA being revoked, the legitimate announcement
is ROV-Invalid. Without revoking it, the attack would work on AS64504 but not on
AS64503, as AS64503 is closer using the original route.

• Instead of publishing a forged CRL, the attacker may cause the same effect by
manipulating a manifest, although it is a matter of local policy what to do when
there is a mismatch between a manifest and the other contents of a repository
[RFC6486].

• The attacker can also simply DoS a repository, such that relying parties cannot
download the objects in it, or, if the attacker is impersonating a repository
already in order to achieve Capability 2 (see section 3.3.4), the attacker can
simply prevent certain objects from being downloaded.

In summary, it is clear that there are currently many ways for a quantum-enabled
attacker to disable the RPKI and protection of ROV as a whole. Due to the possibility
of making legitimate routes ROV-Invalid, trust in ROV could be abused to perform
attacks on BGP with a higher chance of success than without ROV being used at
all. Using ROV with its current cryptography under a quantum-enabled threat model
can result in significant disruption and makes attacks on BGP routing more likely to
succeed than without ROV. Hence, it is very important to migrate the RPKI to use
quantum-safe algorithms before a quantum-threat arises.

3.2 Attacks on ASPA

ASPA can be used on top of ROV for path validation. While of course, our attacker
could modify ASPAs to allow any malicious route, bypassing the validation that ASPA
provides, the manipulation of ASPAs can—like we have seen for ROV—have even
more severe consequences.

By modifying or creating ASPAs for a victim AS, the attacker can easily make the
victim unreachable, or reroute all traffic to the victim through the attacker’s AS. Just
as we’ve seen for ROV, the situation where ASPA validation is used, but an attacker
can manipulate the ASPA objects in the RPKI, is worse than the situation where
ASPA is not used at all.

3.2.1 Making an AS unreachable with an AS0 ASPA

The attacker can forge a so-called AS0 ASPA for a victim AS. Such an ASPA authorizes
only AS0, which does not exist, as a provider, making any route to or through the
victim AS ASPA-Invalid. This is a straightforward way to make a victim unreachable.
When applied on an important AS such as a transit provider, or even several of
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Figure 3.2: An example of using a forged ASPA to enhance a hijack. Due to the
ASPA, traffic is attracted even from ASes that have a much shorter route to the
victim. Also note that this attack would pass ROV, and can pass or be adapted to
pass BGPsec as well.

them at the same time, the impact of this attack can be enormous—possibly even
causing fragmentation of the internet, where large parts of the internet cannot reach
other parts. Of course, a large-scale attack would quickly be noticed and can be
mitigated by operators, but even a short period of such large-scale unreachability can
be disastrous.

3.2.2 Enhancing a hijack with a forged ASPA

The above approach of invalidating legitimate routes can be combined with the
strategy we have seen using ROV: invalidating legitimate routes to make a hijacking
announcement more likely to be accepted. Using ASPA, this is very simple. Considering
the malicious AS64500 who wants to eavesdrop, modify, or block all traffic to AS64501.
The quantum-enabled attacker can simply publish an ASPA AS64501 => [AS64500],
which means that only routes through AS64500 as last hop will be allowed. Then
AS64500 only needs to announce a prefix with AS path AS64500 AS64501, and all
traffic to AS64501 will be rerouted through AS64500 (even from direct neighbors of
AS64501 if they perform ASPA validation). An example of this attack is shown in
fig. 3.2.

The attacks using ASPA seem to be even more straightforward than those using ROV,
and the potential impact is even bigger because ASPA attacks can influence not only
specific prefixes but also any route through a victim AS, making transit providers and
internet exchanges an attractive target for large-scale attacks.

Performing the above attacks consists of either creating and publishing an ASPA for a
victim AS that did not have an ASPA yet, or modifying an existing ASPA. Between
these two, the former might be easier to perform, as there’s no need to also take
down the old ASPA. So, again just as with ROAs, ASes that already publish ASPAs
are slightly harder to attack. Adding an attested provider can always be done by
publishing an additional ASPA object, although it should be unusual for an AS to
have multiple ASPA objects, and only adding a provider only works to bypass ASPA
validation, not for the stronger attacks above.

Many variations of these attacks are also possible, including:

• Instead of an AS0 ASPA, an ASPA authorizing only non-adjacent ASes has the
same effect.

• Instead of hijacking to eavesdrop or drop traffic, ASPAs could be used to route
lots of traffic (e.g. from transit providers) through a small multi-homed AS that
does not have the capacity to process the traffic, as DoS attack on that AS.
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Figure 3.3: Roles in the RPKI. Interactions are labeled with our corresponding
subsections and related protocols.

• Instead of enhancing a hijack with an ASPA from the victim AS attesting to the
attacker AS, such a method can also be used at other steps along an existing
path to the victim AS.

3.3 Setup and distribution

The certificates that are part of the RPKI itself are only meant to provide integrity of
the objects in the RPKI from the phase of creating those objects, up to their validation
by a Relying Party. However, the RPKI ecosystem consists of multiple components
and phases that influence its security, such as setting up the relationships between
parties, and while distributing data towards relying parties.

There is a reliance on several protocols to ensure availability (i.e. that Relying Parties
can retrieve all and up-to-date RPKI objects), and the integrity before creating RPKI
objects, and the integrity after validating them.

Figure 3.3 shows the roles in the RPKI and their relations. In this section, we discuss
each relation in chronological order, starting with the setup of CA certificates, through
publishing RPKI objects, fetching them for validation, and finally exposing validated
data to routers. In each subsection, we show how the relation is involved in the security
of the RPKI.

3.3.1 Parent to child CA

The relation between a Parent CA (e.g. an RIR) and a Child CA (e.g. an ISP) takes
place using the [RFC6492] protocol, and out-of-band establishment of trusted public
keys for both parties.

Public keys for this relation can (but do not have to) be exchanged using [RFC8183],
which is a simple message format to exchange trust anchors between two parties, over
an out-of-band authenticated channel. This trust anchor is, somewhat confusingly,
called a Business PKI (BPKI) trust anchor, being potentially at the top of a hierarchy
of multiple keys that can be used to sign [RFC6492] messages. In practice, the
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BPKI TA is often used directly, and the term ‘Business’ in BPKI is an unfortunate
choice.

Measures to ensure authentication and integrity of out-of-band channel are deliberately
left unspecified, but in practice, this is often (for example, when setting up a child
CA under the RIPE NCC RIR) done by uploading and downloading messages on
a web interface. In light of a quantum threat, it is important — and the parent
CA’s responsibility — to ensure the security of this key exchange. For example, it is
clearly crucial that the RIPE NCC’s web interface is secured using quantum-safe TLS
algorithms.

After setting up these public keys, further communication between parent and child
is covered by [RFC6492]. This consists of messages that are signed using keys that
are trusted based on an exchange as described above.1 [RFC6492] specifies that
the signature on its signed objects must be made using the algorithms specified in
[RFC6485]. That is, the signatures on [RFC6492] messages use the same cryptography
that is used for objects in the RPKI themselves. Currently, this is RSA, which we
consider vulnerable to quantum attacks. Hence, when migrating the RPKI to quantum-
safe algorithms, the [RFC6492] communication must be updated as well.

If the cryptography in [RFC6492] is broken, an attacker can impersonate a child CA to
a parent CA, to get or revoke certificates for any resource held by the child CA. This
would be a straightforward attack that needs only the capability to forge a signature
on an [RFC6492] message, without needing to cause forged objects to be published in
a repository that is not run by the attacker (Capability 2). The attacker can forge
a request for a new certificate, with both the subject key and the publication point
chosen by the attacker. So, using a single forged message, the attacker can take over a
CA, allowing them to make and publish objects at will.

Thus, the channel to a parent CA may be the single most attractive target for an
attacker. The only limitation is that not all resources are held by subordinate CAs
that communicate with the parent using [RFC6492] with RSA signatures: resources
held by users of an RIR’s hosted RPKI service as discussed in section 3.3.3 are not
vulnerable to this attack.

3.3.2 CA to repository

Every RPKI CA can choose their own repository to publish to, which can be, but
does not have to be, run by the resource holders themselves. When a CA and the
corresponding repository are run by the same entity—including when a hosted RPKI
service (section 3.3.3) is used—communication between the two roles could be internal
to a single piece of software, or take place on a private network that an attacker cannot
access. Nonetheless, many CAs use an external repository, as hosting a repository
comes with the operational burden of ensuring high availability, and using centralized
repositories is beneficial for the downloading performance of relying parties.

In general, the communication channel (public keys) between a CA and repository is
bootstrapped the same way as those between parent and child CAs: typically using
[RFC8183], relying on unspecified measures for authentication and integrity. When
such public keys have been set up, the CA can instruct the repository to publish
or withdraw objects, by sending signed messages over plain HTTP or optionally
HTTPS. The signatures [RFC8181] messages are identical to those in [RFC6492]
described above in section 3.3.1, so likewise, this communication should be updated
to use quantum-safe algorithms. On the other hand, the impact of compromise of
this channel is different from that of the parent-child channel: it allows an attacker to
withdraw and publish objects, but not create them. For our quantum-enabled attacker,

1For example, the keys used to sign [RFC6492] messages can include a certificate chain up to the
(so-called Business PKI ) trust anchors exchanged using [RFC8183].
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this means that as long as this channel does not use quantum-safe signatures, it is
an obvious avenue to get capability (b). Additionally, if the RPKI itself were to be
migrated to use quantum-safe algorithms but [RFC8181] were not, a quantum-enabled
attacker could still perform denial-of-service attacks by withdrawing objects, which
can cause BGP routing failures.

3.3.3 Hosted RPKI

In some cases, an RIR or NIR offers its members a hosted RPKI service. That is, the
registry runs a CA on behalf of the user, taking care of all cryptographic operations,
as well as publication to a central repository. This allows resource holders to create
and publish ROAs and possibly ASPA objects very easily through a web interface,
making adoption more attractive. These services are used by the vast majority of
resource holders.2

Using a hosted RPKI means that several roles are combined into one entity: the RIR
that offers it combines the CA and repository roles, and instead of using [RFC6492,
RFC8181] for communication between these roles, there is a single channel (such as a
web interface) where users can manage their resources.3 Security of this system then
depends on the RIR’s systems and the authentication and integrity of the user-facing
interface. Hence, much like the bootstrapping of public keys between parent and child
CAs, it is necessary for internet registries that offer a hosted RPKI service to ensure
that their web interface is secured using quantum-safe TLS algorithms.

3.3.4 Repository to RP

Once RPKI objects are published in a repository, relying parties need to download
them for validation. Originally, this was done using rsync [RFC6480]: each repository
had, and still must have, a public, read-only rsync location. In this setting, relying
parties periodically download all objects from all repositories over a clear text TCP
connection.

More recently, the RPKI Repository Delta Protocol (RRDP) has been introduced.
This solves scaling and security issues in the old rsync alternative: RRDP takes place
over HTTPS, which allows a repository to scale horizontally and provides integrity and
authentication of the repository. With the introduction of RRDP, it is more difficult
to perform Denial-of-Service (DoS) attacks on the RPKI by attacking distribution
points, and due to the use of HTTPS, to impersonate an RRDP publication point.
However, if one manages to take down an RRDP publication point, relying parties
will typically4 fall back to the corresponding rsync publication point, which in turn
is easy to attack. Hence, performing DoS or becoming Man-in-the-Middle (MitM)
between a relying party and a repository is possible using a downgrade attack to
the unauthenticated rsync protocol. In particular, it is realistic to assume that a
quantum-capable attacker—who is clearly advanced and well-resourced—can pull off a
relatively simple DoS and optionally MitM attack, and hence, has Capability 2.

2For example, at the time of writing, RIPE’s main repository has over 20 000 users of their hosted
CA service, and fewer than 300 resource certificates pointing to another repository. The latter even
include so-called hybrid CAs, that perform the CA role themselves but still use a repository provided
by RIPE.

3Note that even in a hosted RPKI service, there might be communication between CA and
repository components where sections 3.3.1 and 3.3.2 apply, due to separation of concerns within
such a service.

4This decision is controversial. [38] measured that few RPs actually downgraded
to rsync if an advertised RRDP publication point was unavailable in 2020. However,
soon after that, Routinator was changed to fall back: see https://blog.nlnetlabs.nl/

why-routinator-doesnt-fall-back-to-rsync/.
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3.3.5 RP to router

Finally, there is a step between the validating software and the actual router,5 using the
RPKI-to-Router (RTR) protocol [RFC6810, RFC8210]. This final link relies strictly on
transport security, and hence should take place either over a cryptographically secured
channel or on a trusted network; see sections 9 and 14 of [RFC8210]. If unprotected
transport is used, the operator should ensure that even a quantum-enabled attacker
cannot compromise the trusted network; necessary measures for this depend on the
specific situation and are an operator’s responsibility. For transport over one of the
protected protocols in [RFC8210], changes might be necessary to make them quantum-
resistant. We consider the security of these transport protocols out of scope for this
thesis, but some may be quantum-safe already, while others need changes.

3.3.6 Reliance on other technology

Across the steps involved in setting up and distributing RPKI objects, we have seen that
security relies on core components of the web infrastructure. While we do not provide
a complete analysis here, we highlight two examples of such dependencies:

HTTPS The integrity provided by HTTPS and authentication using the Web PKI
is crucial in hosted RPKI services, the setup of relations between CAs, and the
downloading of RPKI objects over RRDP.

DNS(SEC) For availability, the DNS is crucial for virtually every part of the
RPKI ecosystem. It is involved for example in locating repositories from relying
party software, and could be an avenue to DoS the RPKI or become MitM. [30]
shows that DNS is a weakness for the resilience of many relying parties and that a
significant number of relying parties do not properly perform DNSSEC validation.
Improvement in that regard, as well as upgrading DNSSEC to use quantum-safe
algorithms, is necessary to protect the RPKI from DoS attacks and quantum-enabled
DNS spoofing.

This is not an exhaustive inventory of all related technologies and protocols that the
RPKI ecosystem depends on. For example, there are multiple transport options listed
in [RFC8210] that need to provide integrity and authentication, and while those same
properties are required from HTTPS connections for RRDP, confidentiality can also be
essential in password-based authentication to RIRs’ web interfaces. A comprehensive
inventorization of all related protocols and the specific security properties that the
RPKI requires from each of them is left for future work.

3.4 Conclusions

We have seen severe attacks, that can hurt routing security beyond simply not enjoying
the protection of ROV and ASPA:

• ROV with broken cryptography can be abused to successfully perform hijacks,
that would not succeed if there was no ROV at all. This is even easier with
ASPA.

• There is also the possibility to (temporarily) make large portions of the internet
unreachable, by making many announcements invalid.

As a consequence, when it is known that these attacks are realistically feasible (perhaps
if they occur for the first time in practice), operators are left with no choice but to

5There may be a caching layer between validators and relying parties, but such a cache would
normally connect to both validators and routers over the same RTR protocol. See for instance
RTRTR: https://github.com/NLnetLabs/rtrtr.
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disable use of the RPKI, falling back to a world without ROV and ASPA. This means
that the attacks we have described can probably be performed at most once, and have
effect only temporarily until operators manually intervene. However, it also shows
that migrating to post-quantum algorithms is strictly necessary to ensure that the
RPKI can be used safely. With broken cryptography, the RPKI is not just ineffective,
but a liability.

Furthermore, we have found in section 3.3.1 that the most attractive target for a
quantum attacker is the communication between a parent CA and a child CA, using
[RFC6492], and usually secured based on a trust anchor established through [RFC8183].
This channel is an easy target because it uses a long-lived key without a revocation
system, and does not require the capability to inject objects in repositories. This
channel would be a good first thing to migrate, also because it is a local matter between
CAs, invisible to RPs. The same goes for the channel between CA and repository,
although it is a less attractive target. Of course, the certificate chains in the RPKI
itself also need to be updated.

Additionally, there are several related protocols that need to be quantum-resistant
too. Most important are the web interfaces of internet registries, such as those of
hosted CA offerings, and for setting up [RFC8183] trust anchors between CAs. This
includes the TLS layer, but also user authentication. There’s also a general reliance
on security of protocols like DNSSEC and HTTPS, for instance to avoid DoS attacks
on repositories.
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Chapter 4

Finding a suitable
post-quantum algorithm

We have seen that the use of RSA prescribed in [RFC7935] will need to be replaced to
prevent the serious quantum-enabled attacks from chapter 3. By replacing RSA or
adding a new algorithm, both the chain of trust down to an RPKI signed object, and
the communication between RPKI CAs and repositories (as discussed in sections 3.3.1
and 3.3.2) — when authenticated using [RFC8183] — can be secured against quantum
attacks.

In this chapter, we will determine the requirements for a new algorithm that can
replace RSA in this context, and evaluate several candidate algorithms against these
requirements.

Several factors determine how suited an algorithm is for use in the RPKI. Considering
that post-quantum algorithms usually have larger keys and signatures, and slower
signing and verification times (or at least some of these properties) compared to RSA,
the main considerations are (1) that a replacement obviously needs to be secure, and
(2) that it should minimally impact the performance of the RPKI as a whole.

Throughout this chapter, we assume that the current signature algorithm is replaced
with a single post-quantum alternative, and that this alternative is adopted in every
object. This is because a migration procedure has been standardized that requires
that only one signature algorithm is allowed. Consequently, a state of partial adoption
is not possible (after the migration). However, in chapter 6 we present an alternative
migration procedure, that also supports having multiple allowed signature algorithms
at the same time. While we recommend the use of this alternative migration, and
indeed making multiple algorithms available, we do not consider it in this chapter to
keep analysis of the performance impact simple.

4.1 Security

A post-quantum signature algorithm must primarily be secure, both against traditional
attackers and against quantum adversaries. The NIST PQC candidates each have
a target security level, ranging from level 1 (‘harder to break than AES-128’) up to
5 (‘harder to break than AES-256’). The security level is a measure of the number
of operations that are needed to break the algorithm, and is a good way to compare
the security of different algorithms. Most algorithms come with several parameter
sets, trading larger keys/signatures and slower signing/verification for higher target
security levels. This means that a decision will need to be made on the security level
that is required or desired for the RPKI.
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4.1.1 Minimum level

A minimum security level could be based on the traditional security offered in the
current situation by RSA-2048. This provides 112 bits of traditional security and
is not recommended by NIST after 2030 [47]. NIST level 1 corresponds to at least
128 bits of security in the traditional sense, so it should be significantly more secure
than RSA-2048. So, even level 1 candidates are good enough as a replacement for
RSA-2048.

4.1.2 Future-proof choice

While a level 1 candidate may suffice for the coming years, there are good reasons
to opt for a higher level. Changing the signature algorithm used in the RPKI is not
straightforward: only a single algorithm is currently allowed, and as every relying
party needs to read every object, significant coordination is needed to make a change.
In contrast to for example TLS (where client and server can negotiate a cipher suite
they both support), all parties in the RPKI need to support the same algorithm(s)
at once. So, changing the algorithm suite again a short time after the first change
is not desirable. This makes it wise to make a very conservative choice and pick an
algorithm that will likely last for many years if other constraints allow it.

Another argument in favor of a conservative choice is that, again due to the need for
coordination in the RPKI, it is necessary that all parties involved agree on the choice
of algorithm. If some people do not trust a proposed choice, it will be hard to get the
consensus needed for a smooth transition.

On the other hand, NIST level 1 already offers more traditional security than RSA-
2048, so it should remain sufficiently secure for many years to come. It is perhaps
more likely that in the coming years a second migration is required due to a weakness
in a particular scheme, than due to security level 1 being considered too weak, so
picking a higher level is probably not necessary. Moreover, using a scheme with NIST
target level 3 or higher could come with some complications. The RPKI uses SHA-256
in many cases, which could become the weakest link, such that it also needs to be
replaced. This is not a problem, but adds some complexity and increases some files’
sizes. Because it would complicate our analysis and comparison of performance, we do
not consider it in this thesis.

4.1.3 Maturity

Apart from the NIST target level of a candidate, there are differences in the confidence
the cryptographic community has in the security of each algorithm. Some schemes
are well-understood, and people are confident that they indeed provide the security
claimed in their NIST level. Others are based on newer ideas, and need more years of
cryptanalysis to be trusted. Using a well-understood algorithm can be a good way to
reduce the risk of having to replace the algorithm again soon if a weakness is found.
This, in turn, would make consensus in the RPKI community easier to achieve.

Furthermore, the algorithms that are already standardized and deployed in practice
(ML-DSA, SLH-DSA, and soon FN-DSA) will have a head start towards getting
production-ready implementations, and support by Hardware Security Modules (HSMs)
that are sometimes used by CAs. Standardization of other algorithms will take several
years, making the 3 selected options more attractive on the short term.

4.1.4 Hybrids

Another option to mitigate the fact that some candidate signature algorithms are not
yet well-understood is to use a hybrid scheme, combining a post-quantum signature
with a traditional one. This way, even if the post-quantum scheme is broken, an
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attacker still also needs to break the traditional scheme. Doing this guarantees that
after migration, the RPKI will still be at least as secure as it is now. For most
post-quantum signatures, using a hybrid is imperative, at least for the coming years,
as their security is not understood enough. However, hash-based schemes, that can
be proven secure assuming only the security of an underlying hash function, are an
exception. So, while for all other schemes we need to account for some computational
and size overhead for a hybrid scheme, hash-based signatures could be used without a
hybrid.

In conclusion, NIST target security level 1 suffices in principle, as it is already an
improvement from RSA-2048 even in terms of traditional security. Of course, higher
levels would be nice to prevent having to upgrade again in the future. Maturity of an
algorithm is also important, so we prefer a well-understood scheme. A hybrid scheme
is probably necessary, which implies some overhead on top of the already larger keys
and signatures of post-quantum algorithms.

4.2 RPKI latency

The performance of the RPKI as a whole is primarily reflected by the time it takes for
a change made by a resource holder to be picked up by relying parties globally. We
call this the RPKI latency. Current validators like Routinator periodically download
the latest changes (or sometimes the full contents, if there is no data cached), and
validate them. The latency is then determined by the validator’s polling interval, the
time to actually perform downloading and then to verify the objects. The polling
interval is configurable (often set to 10 minutes) [38] and not affected by the signature
algorithm, but the downloading and verification times are strongly related to the
signature algorithm that is used.

In [65], the downloading and verification delays are analyzed in a variety of settings. It
is found that there are large differences in performance between repositories, validators,
and regions. While it is important to realize that there are so many factors involved
in the RPKI latency, what we need is a relative measure of the performance when
using a specific algorithm. We present two methodologies to estimate the downloading
and verification times, which can later be applied to any candidate algorithm.

4.2.1 Downloading

Since post-quantum signatures are usually larger than those for RSA, the size of
RPKI objects, and hence the time needed to download them will increase when using
a post-quantum algorithm. To make a well-informed decision for an algorithm, we
need to estimate the performance impact of the new algorithm on the downloading
time.

Normally, a validator downloads a few changes at a time, but sometimes a full download
of a repository is necessary, either because the validator lost its cache, or because the
repository starts a new RRDP session. Full downloads (from a single repository or
all repositories at once) will be delayed by larger signatures and keys, much more
than the more common small updates (deltas), so they are the focus of our analysis.
Furthermore, most of the RPKI data is normally collected using RRDP. While rsync
is still mandatory to support, it is typically used for only a small fraction of the data,
and it is likely to be phased out even more in the future. So, we try to predict the
delay for downloading the full RPKI using RRDP. For downloads over rsync, it still
holds that larger files will take longer to download, but it’s even harder to accurately
predict the delay this causes. Measuring or estimating the impact on rsync downloads,
as well as deltas, is left for future work.
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Fresh RRDP downloads happen by first fetching a notification file from every repository,
which includes the location of a snapshot file. Then, RPs download the snapshot,
which is an XML file with all current RPKI files base-64 encoded in it. So, for a full
download of a repository (not an update using delta files), the downloading consists
of 2 files per repository. Out of these, the snapshot file is the only one whose size
depends on the signature algorithm.

Downloading a snapshot from a repository takes (1) a delay to establish a connection,
(2) a delay for requesting the files, and for the server to start responding, (3) the time
for downloading the notification file, and finally (4) the actual transfer time for the
snapshot. Roughly speaking, there’s a part (1, 2, and 3) that does not change with
the size of the RPKI, and a part (4) that takes time proportional to the size of the
content. In a simple formula, one might model the downloading time as:

tdownload = tconst +
s

b

where tconst is the constant part of the delay (including downloading the notification file
that does not grow with the signature and key sizes), s is the size of the RPKI, and b is a
measure for the transfer rate at which the actual RPKI content is downloaded.1

Since only s depends on the signature algorithm, the delay caused by a new signature
algorithm is proportional to the difference in s between the new and old algorithms.
To then obtain the change in delay caused by a certain choice for an algorithm, we
need to know:

• the (change in) the total size of the RPKI, i.e. s for current and new algorithms;

• how large the size-dependent fraction of the downloading time with RSA is, i.e.
s
b for RSA.

4.2.1.1 RPKI size

The objects that make up s can be either RPKI Resource Certificates ([RFC6487])
or CRLs, or RPKI Signed Objects ([RFC6488]). The majority of objects are Signed
Objects, which contain one public key, and two signatures each. Resource Certificates
consist of one public key and one signature, and the corresponding CRLs have one
signature each. Overall, there must then be twice as many signatures as public keys
in the RPKI. This is confirmed in table 4.1. Hence, assuming that the structure and
content of the RPKI remain similar, the size of the RPKI changes proportionally
to:

spk + 2ssig

where spk and ssig are the sizes of the public key and signature of a new algorithm,
respectively. This formula is a good way to compare the combination of algorithms’
signature and public key sizes for the RPKI.

Next, we can also predict precisely the total size s of the RPKI for a given algorithm,
based on a recent snapshot of the RPKI. We count the size and number of files per
type in the RIPE NCC RPKI archive [14] snapshot from the first of February 2025.2

This gives the total size (corresponding to s in the formula above) of the current
RPKI, and the number of signatures and public keys in it. These numbers are shown
in table 4.1. Indeed, the table reflects the expected 2 : 1 ratio between signatures and

1For simplicity, we ignore overhead for the RRDP protocol, such as base-64 encoding, included
hashes over the files, but also possible savings by compression at the HTTP level. Most of these
factors do not change much with the algorithm: the number of files and hence hashes, URLs and
XML elements do not change. Compression is already unlikely to do very much on the file contents
(instead affecting mainly the more redundant XML and base-64 encoding of the RRDP layer), as
they consist largely of cryptographic material that does not compress well.

2We count in the rta/unvalidated directories for each TA. The validated directory contains
duplicates of a subset of these files, that pass validation.
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public keys. We can use the number of signatures and public keys later on to predict
the growth from an algorithm’s signature and public key size.

Table 4.1: Number of files, signatures and public keys, and total size per type in the
2025-02-01 RPKI archive snapshot.

File type Files sig/file pk/file Signatures Public keys Total size (bytes)

Res. cert. 45 135 1 1 45 135 45 135 70 545 531

CRL 47 197 1 0 47 197 0 35 175 003

Manifest 47 208 2 1 96 416 47 208 122 831 055

ROA 300 845 2 1 601 690 300 845 609 042 128

ASPA 239 2 1 478 239 436 733

Total 440 863 788 916 393 427 838 030 450

4.2.1.2 Bandwidth: worst-case

Knowing the size of the RPKI, we next need to translate changes in size to changes
in downloading time. This is much harder to predict, as it depends very much on
individual repositories and relying parties:

• How and where is the repository hosted? Using a global CDN, or from a single
location?

• How is the bandwidth and latency between a specific validator and repository?

When using RRDP, the downloading is aggregated in one large snapshot file, instead
of separate requests for each RPKI object. This means that there is relatively little
time spent on establishing connections and sending requests. Nevertheless, since not
only establishing connections, but also fetching notification files and other constant
delays are involved, we expect that in our formula tdownload = tconst +

s
b , the constant

part tconst is not negligible.

Since the downloading time depends so much on specifics of a validator, there are
no good statistics available. Still, [25] report (without much explanation) that the
downloading of the RPKI takes 4 minutes. This seems consistent with the duration of
downloading a fresh copy of the RPKI on a laptop with a decent internet connection,
but makes no distinction between the time of actually downloading data ( sb ) versus
the constant delays (tconst).

In the absence of more precise numbers, the best we can do is to derive a strict upper
bound on the part of the downloading time that depends on the RPKI size. While
we expect tconst to be significant, we can assume for a ‘worst-case’ estimation that
tconst ≈ 0, and then:

4 minutes ≈ s

b

Filling in the total size s = 838 MB from section 4.2.1.1, we get a ‘worst-case’
bandwidth of b = 1632 MB

240 s = 3.5 MB/s.

Notably, this is a very conservative estimate. As tconst is actually significant, the true
average bandwidth must be higher, or in other words, the size-dependent downloading
time s

b must be shorter. So, when calculating with s
b = 240 s we are overestimating

the delay caused by the signature algorithm, making any conclusions based on this
number conservative and safe.3

3Furthermore, the delays for a complete download of the RPKI occur infrequently in practice.
Typically, only a few changes are downloaded at a time, but still, it is desirable that complete
downloads don’t take excessively long.
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4.2.1.3 Bandwidth: measurement

To get a better estimate of the bandwidth for normal validators, we perform our own
measurements, without assuming tconst ≈ 0.

We perform measurements of s
b directly, using an instrumented variant of Routinator.

This modified validator logs every successful request for an RRDP snapshot, with the
total duration for that request and the total size of the objects included in it. With
this, we have performed full downloads of the RPKI 10 times, running on a machine
in a data center to simulate a realistic deployment of a validator. Our finding is that
the average time spent downloading RRDP snapshots is only s

b = 14.5 s. Much more
time is spent on downloading notification files (29.5 s) and waiting for timeout of
unsuccessful requests (for a total duration of around 5 minutes). More details on our
methodology and results can be found in appendix A.

Our measured 14.5 s is from a machine with a good bandwidth to the internet of
roughly 2 Gbps. This can be realistic for some validators that are running in data
centers, but there may also be many validators with a lower bandwidth. So, our 14.5
seconds is a slight underestimation for many validators. The real cost for downloading
will generally be between the 14.5 s and the 240 s, but closer to the former than the
latter.

When comparing candidates in table 4.3, we provide estimates of the downloading
time using both the assumption of s

b = 240 s and s
b = 14.5 s.

4.2.2 Validation

After downloading new data, the validator needs to parse the objects and perform
validation, including verifying the signatures.

The time to validate all objects again consists of a part that does not change depending
on the signature algorithm (parsing and most validation steps), and a part that is
roughly proportional to the cost of verifying a signature. So here, the difference in
latency for validation, assuming no other changes to the RPKI content, is simply
proportional to the difference in signature verification time between the old and new
algorithm.

To get an idea of how the validation time compares to the downloading time, we again
need to know how long it current;y takes. In the current RPKI, validation time is
not problematic. Where [25] observe that the downloading contributes 4 minutes of
latency, the processing time adds only 1 more minute. However, this statistic says
nothing about the fraction inside these durations that is affected by the signature
algorithm, so we attempt to estimate this.

4.2.2.1 Signature verification time

We perform a small experiment to measure the CPU time that is currently spent on
validating RSA signatures in Routinator.

• We build and install Routinator v0.14.1, on a laptop with Ubuntu 24.04, 32 GB
RAM and Intel i7-1255U.

• We first download a full copy of the RPKI, using routinator --fresh update.
This ensures that no downloading is necessary in the next steps.

• Repeating 30 times, we measure the time it takes to validate the downloaded
RPKI copy:

/usr/bin/time -f "%e, %U, %S" -a -o verify_time.csv \

routinator --validation-threads=1 -q \

vrps --noupdate -f none
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This performs validation of the full RPKI, with only one thread, and without
producing any output.

• Next, we modify Routinator to use a dummy signature verification that im-
mediately returns Ok(())4 and install this. Using this, we can measure how
much time is spent parsing and processing objects, without the actual signature
verification.

• Again, we measure the validation time 30 times.

Table 4.2: User CPU time spent on validation with and without signature verification
(10 executions per scenario).

Scenario user time (s) std. dev. (s)

With verification 18.21 0.74

Without verification 5.21 0.23

So, as can be seen from table 4.2, the RSA signature verification on general-purpose
hardware takes about 13 CPU seconds, out of the total 18.2 seconds per validation
run with RSA.5

4.3 Signing and key generation

Key generation and signing speed are not very important in the RPKI, as it happens
in the background, and much less frequently than verification. We can distinguish
between three situations where signing and key generation happen:

• Key generation of a CA’s key pairs happens only incidentally, involving only a
single key at once.

• Signing using a CA’s key pair is infrequent,6 but can sometimes happen thousands
of times in a short time frame. It is hard to parallelize (with more CPU cores)
when CAs employ physical Hardware Security Modules (HSMs).

• Generating and signing with one-time key pairs happens as often as signing
objects with a CA’s key pair (see chapter 5). However, as these private keys
needn’t be stored in an HSM, it is easier to parallelize this operation. In chapter 5,
we also propose a way to avoid the need to make these signatures at all.

So, key generation is not much of a concern, but signing speed could be, particularly
in the following situations where many signatures are made in a batch.

4.3.1 Re-issuance during key rollover

Signing many objects happens in the most extreme case in a [RFC6489] key rollover.
During a rollover, a CA must reissue its subordinate certificates and Signed Objects
with a new key pair. For the very largest manifests to date, that means re-signing up
to around 50 000 objects. [RFC6489] prescribes that normally, the CA should have
a staging period of at least 24 hours. Even for such an extremely large CA, there is
normally ample time to reissue everything even if signing takes up to 1 second.7

4A small change in PublicKeyFormat::verify at https://github.com/NLnetLabs/rpki-rs/blob/
v0.18.5/src/crypto/keys.rs#L138.

5Our raw data is at https://github.com/SIDN/pqc-rpki/tree/main/algorithm-selection/

verification-measurements, or can be requested from the author or Radboud University.
6This also goes for signing messages to publication servers and parent / child CAs.
7At 1 signature per second, signing all objects with the CA’s key takes 14 hours. The additional

key generation and signature per object, not counted in the 14 hours, is not problematic, as it concerns
one-time key pairs, that can be parallelized easier, for example without using an HSM. Alternatively,
for such large CAs, a staging period of a few days can also be used.
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4.3.2 Changes to aggregate ROAs

Another situation in which it may be necessary to perform many signatures in a short
time frame is when many new Signed Objects have to be made. For example, consider
a very large CA that performs ROA aggregation, so there are n ROAs (for n ASes)
that each include at least 2 prefixes, including a single prefix p that is authorized
for every AS. If the CA loses holdership of p (it is removed from the CA’s resource
certificate), the CA will need to quickly reissue every ROA to not include p, to avoid
all ROAs being invalidated through fate-sharing described in [RFC9455].

It is unclear how many signatures and in what time frame this could need to be done
in practice. Normally, such changes to a resource certificate would not be unexpected,
and the subordinate CA can prepare for it in advance, but it is a possible situation, in
which it is very important that a CA can resolve it quickly.

To be safe, considering that several CAs currently have multiple thousands of objects,
we can assume that it might be necessary to sign thousands of objects in a short time
frame. Then, having a signing time of significantly less than a second per signature is
a good idea.

Most post-quantum signature candidates have signing and key generation speeds that
are nowhere near the 1-second mark on general-purpose hardware, and for these, any
difference in signing speed is inconsequential. Very slow signing is no problem for most
CAs and for day-to-day operation of the biggest CAs, but may either complicate key
rollovers, handling changes to the CA’s resource certificates, or require potentially
complicated hardware upgrades for the largest CAs. Hence, a suitable signature
scheme should have a signing time of not more than a fraction of a second, to avoid
operational issues for large CAs.

4.4 Candidate algorithms

In the previous sections, we have found the following requirements:

Security NIST target level 1 suffices. However, a conservative choice would be good
to avoid needing another algorithm migration too soon. Regardless of target level,
maturity is an important factor. For most schemes, a hybrid with a traditional
scheme is necessary.

Latency The next most important factor is performance for relying parties. Sec-
tions 4.2.1 and 4.2.2 propose a method we can use to estimate the impact each
algorithm has on the delay for a full download and validation run.

Signing While precise signing speed has little impact on the RPKI, it is desirable
to be able to easily make several signatures per second. Otherwise, this can
lead to operational concerns for large CAs that incidentally need to make many
signatures quickly.

Now, we can evaluate several promising post-quantum signature algorithms and
parameter sets against these requirements. Since every candidate has a sufficient
claimed security level, we start off estimating performance impact, and after that,
discuss other aspects per candidate.

4.4.1 Latency

Using the estimated effects on the RPKI latency from sections 4.2.1 and 4.2.2.1,
we present in table 4.3 an overview of several promising post-quantum signature
algorithms and parameter sets. The table assumes full adoption for all signed objects
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and certificates, and does not account for overhead for a hybrid with a traditional
scheme.

We include the current RSA-2048 for reference, and Ed25519 as another comparison
that has been considered as a candidate replacement algorithm in the RPKI for its
small keys and signatures. Next, ML-DSA and SLH-DSA have been standardized by
NIST, and Falcon is expected to be standardized very soon. SQIsign, MAYO, HAWK,
FAEST and SNOVA are interesting candidates for NIST’s call for additional signature
schemes. We include only algorithms and parameter sets that do not have extremely
large keys or signatures or slow verification, as there are many such candidates that
are definitely not suitable for the RPKI. All the numbers are based on the overview
from [78]. For many candidates, these are still subject to change, and the benchmarks
are taken from each scheme’s submission document and might not be entirely accurate
or comparable. New attacks that break the schemes may also be found, especially for
the candidates for NIST’s call for additional signatures.

Table 4.3: Characteristics of several post-quantum signature algorithms. The down-
loading time estimates are based on a baseline of 240 or 14.5 seconds, corresponding to
the worst-case from literature (4.2.1.2) and our more realistic measurement (4.2.1.3)
respectively. The ratio between these two columns is constant by definition. For
verification time, we use a baseline of 13 CPU seconds for RSA verification (4.2.2).

Sizes (bytes) Estimated times (seconds)

Algorithm Param. NIST
level

pk sig Total
RPKI size

Download
(worst-case)

Download
(measured)

Verification
CPU time

RSA 2048 - 272 256 838 MB 240.0 14.5 13.0

EdDSA Ed25519 - 32 64 592 MB 169.6 10.2 37.6

ML-DSA 44 2 1 312 2 420 3.0 GB 846.1 51.1 34.2

65 3 1 952 3 309 3.9 GB 1 119.1 67.6 51.8

87 5 2 592 4 627 5.2 GB 1 489.0 90.0 80.9

Falcon 512 1 897 666 1.4 GB 403.1 24.4 23.4

1024 5 1 793 1 280 2.2 GB 642.7 38.8 46.4

SLH-DSA SHAKE-128s 1 32 7 856 6.7 GB 1 930.1 116.6 1 376.3

SHAKE-128f 1 32 17 088 14.0 GB 4 015.9 242.6 3 729.5

SQIsign I 1 65 148 671 MB 192.3 11.6 1 473.3

III 3 97 224 744 MB 213.1 12.9 5 373.3

V 5 129 292 810 MB 232.0 14.0 10 313.3

MAYO 1 1 1 420 454 1.4 GB 414.1 25.0 44.3

2 1 4 912 186 2.6 GB 747.0 45.1 16.3

3 3 2 986 681 2.2 GB 641.8 38.8 100.5

5 5 5 554 964 3.5 GB 995.1 60.1 246.7

HAWK 512 1 1 024 555 1.4 GB 392.3 23.7 42.8

1024 5 2 440 1 221 2.5 GB 702.3 42.4 87.5

FAEST 128s 1 32 4 506 4.1 GB 1 173.2 70.9 2 826.2

128f 1 32 5 924 5.2 GB 1 493.6 90.2 408.2

EM-128s 1 32 3 906 3.6 GB 1 037.6 62.7 2 137.2

EM-128f 1 32 5 060 4.5 GB 1 298.3 78.4 321.5

SNOVA (24, 5, 4) 1 1 016 248 1.1 GB 322.0 19.5 47.3

(25, 8, 3) 1 2 320 165 1.6 GB 450.2 27.2 63.2

34



Our data and calculations can be found on https://github.com/SIDN/pqc-rpki/

tree/main/algorithm-selection/candidates, and on request from the author and
Radboud University.

Table 4.3 shows that there is a wide range in both signature and public key sizes, and
verification speed. A trade-off needs to be made between the increase in downloading
and verification time, as well as some other properties of the candidate algorithms.
While it may seem logical to just pick the algorithm with the smallest sum of download-
ing and verification time (for one of the downloading estimates), this is not necessarily
the best choice. Several limitations apply to the estimates in the table:

• One of the two downloading time estimates is based on the upper bound where
downloading time is proportional to a duration of 240 seconds. This is certainly
an overestimation.

• The other downloading time is based on the 14.5 seconds we measured in
appendix A. This is a more realistic estimate, but from a very good internet
connection. The majority of validators will have a somewhat slower connection.

• Furthermore, in both columns we display the estimate of only the s
b time. There

is also some constant time that is not affected by the signature algorithm.
Especially the downloading estimate based on a 14.5 s baseline is not the total
time it takes to download the RPKI, which would be roughly 4 or 5 minutes
more.

• Similarly, the verification delay is about single-core performance. In practice,
verification can be parallelized heavily, although that does come at some cost.

Furthermore, the numbers assume that the structure of the RPKI and the computa-
tional resources of validators remain the same. In practice however, some optimization
is possible for both of these aspects.

4.4.1.1 Changes to RPKI structure

Currently, some CAs perform ROA aggregation: combining many small ROAs (that
concern e.g. a single prefix) for an AS into a single larger ROA with all prefixes for
that AS. This practice can greatly reduce the size of the RPKI, because the per-object
overhead of a ROA is very large compared to the content: a single-prefix ROA can be
over 1.5 KB, despite containing only a few bytes of useful data (the prefix and the
max length). Still, [RFC9455] generally recommends against this practice, because
it leads to the “shared fate”, where if a single aggregate ROA becomes invalid (e.g.
it expires, or one of the prefixes is removed from the CAs resource certificate), every
prefix in the aggregate ROA is no longer considered by relying parties.

Most RIRs do aggregate ROAs in their hosted RPKI service. This does not actually
produce the risks discussed in [RFC9455], because the users indicate only which
announcements they want to allow, and the actual ROAs are made automatically.
Expiry and revocation are safely handled without manual intervention.

One example of a CA that did not aggregate ROAs led to an incident on the 30th
of January 2025. A large CA had published over 50 000 objects. This is not only
inefficient in terms of repository bandwidth, but because the CA’s manifest includes
the name and hash of each object, it also tripped manifest file size limits in some old
replying party software [73]. [65] and [74] show that, especially under the ARIN trust
anchor, there is much room for optimization through ROA aggregation.

If a new algorithm with larger public keys and signatures causes the overhead per
signed object to increase, this could motivate large CAs to (despite [RFC9455]) start
performing ROA aggregation, reducing the number of files, which could compensate
for the per-file overhead.
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4.4.1.2 Scaling validators

The CPU time measured in section 4.2.2.1 is using Routinator with a single thread.
However, validation can be parallelized across multiple cores. Since Relying Party
software normally runs on general purpose hardware (not on actual routers), it would
be quite easy for an operator to e.g. switch from a small (virtual) machine to one with
many more cores. Where a current validator would easily support a 10-minute refresh
interval on a 2-core machine, if signature verification is a few times slower, scaling up
to a 4 or 8-core machine is a simple and cheap way to compensate.8

4.4.1.3 Caching in validators

Another measure to speed up validation is by caching signature verification results.
Most validators verify every signature once per validation run. However, most signa-
tures do not change between runs, so the result of a verification could be cached and
reused.9 [58] shows that this can greatly reduce the CPU time spent on validation. A
downside is that this adds some complexity to validator implementations, but this
becomes more worthwhile if the signature verification is costly. Like the downloading
time, the full verification cost also applies when a validator has no cache.

4.4.1.4 Conclusion on latency

We have seen that the downloading times in table 4.3 could be improved a bit if more
CAs decide to perform ROA aggregation. However, for the downloading time, scaling
is not easy. There are limits to the bandwidth of a repository and a validator that
cannot be stretched much.

The verification speed is more flexible, as there is a lot of room for optimization through
caching and parallelism, but this comes at the cost of more complex implementation,
and perhaps computational resources.

Based solely on the impact on latency, we can conclude that Falcon in particular is
an excellent option, featuring small keys and efficient verification. HAWK, MAYO,
and SNOVA perform similarly, and ML-DSA can be a viable alternative as well.
The verification times for each of these do not demand aggressive optimization. The
downloading times are likely no problem for well-connected validators. Even in our
worst-case estimate, the sizes are manageable considering the infrequency of full
downloads, but the clear differences in the worst case make Falcon-512, HAWK-512,
MAYO-1 and SNOVA-(24, 5, 4) stand out.

SLH-DSA and FAEST are poor options from a performance perspective. While in our
realistic estimate, their downloading time can be handled, the sizes impose a big load
on repositories and validators with more limited bandwidth. The verification times
are also slow enough to strictly require optimization through caching and still make
the initial verification take excessively long. In the best case, there is significant cost
both in terms of bandwidth, CPU time, and implementation complexity, that together
makes them poor options compared to the alternatives. In the worst case, they are
simply unusable.

SQIsign similarly has inconveniently slow verification. The very short signatures are
appealing, but even if verification results are cached, the small size may not make up
for the expensive initial verification cost.

8In Routinator v0.14.1, verification is parallelized with a CA as unit of work, which does not scale
perfectly: each CA’s objects are processed by a single thread, instead of each individual object. Hence,
the runtime is bounded by the CPU time needed for the biggest CA. Changing this to per-object
parallelism would improve the scaling over more than a few cores, but this is simply not necessary
with RSA signatures. For a slower signature algorithm, it could be beneficial.

9That is, for each verified signature, the boolean cryptographic verification result can be stored.
During later validation runs, only timestamps and revocation need to be checked, not the costlier
cryptographic verification.
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4.4.2 Other requirements

Now that we have an idea of what algorithms are performant enough for relying parties,
we can evaluate the candidates on other aspects.

4.4.2.1 Signing speed

Table 4.4 indicates an estimate signing time per signature, based on the reported CPU
cycles from [78] and a 2.5 GHz CPU. Note that this is a somewhat imprecise comparison,
as the benchmarks were reported from a variety of benchmarking platforms.

Put simply, most algorithms easily sign fast enough, but just as we have seen for the
verification performance, SLH-DSA and to a lesser degree SQIsign sign too slowly to
be practical. For SLH-DSA in particular, the SHAKE-128f parameter set offers much
faster signing than SHAKE-128s, but much larger signatures and slower verification,
that make it unsuitable from the perspective of a validator.

4.4.2.2 Maturity

The performance aspects leave us with a few acceptable candidate algorithms and
parameter sets. We now discuss the trust in their security for each option individu-
ally.

Table 4.4: Estimated signing speed on a 2.5 GHz CPU.

Algorithm Param. NIST
level

Signing time (ms)

RSA 2048 - 10.800

EdDSA Ed25519 - 0.017

ML-DSA 44 2 0.133

65 3 0.212

87 5 0.257

Falcon 512 1 0.404

1024 5 0.821

SLH-DSA SHAKE-128s 1 1 873.028

SHAKE-128f 1 95.918

SQIsign I 1 40.640

III 3 123.680

V 5 203.000

MAYO 1 1 0.188

2 1 0.114

3 3 0.407

5 5 0.955

HAWK 512 1 0.034

1024 5 0.072

FAEST 128s 1 5.115

128f 1 0.689

EM-128s 1 3.761

EM-128f 1 0.562

SNOVA (24, 5, 4) 1 0.123

(25, 8, 3) 1 0.148
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Falcon Having been selected for standardization, Falcon is an option that has been
studied well, and the standardized version will likely have good implementations
available soon, even in hardware security modules. Like ML-DSA and HAWK,
Falcon is a lattice-based scheme. A downside of Falcon used to be that it required
floating-point arithmetic for signing, which was hard to make constant-time.
However, efficient constant-time implementations have been developed [56, 26],
and signing in the RPKI happens offline anyway, so timing attacks are not a big
concern. Falcon does not offer an intermediate-level (e.g. 3) parameter set, but
the level 5 parameter set is not very expensive.

HAWK HAWK is another lattice-based scheme, that is very similar to Falcon.
However, it does not use any floating point arithmetic, and depends on a
different hardness assumption [8]. HAWK is a candidate for NIST’s call for
additional signature schemes, and it is not clear whether it will be standardized.
That makes Falcon more appealing from a maturity perspective. Like Falcon,
HAWK has no intermediate-level parameter set but a reasonably cheap level 5
option.

MAYO MAYO is a multivariate scheme, not based on lattice problems. It is also a
candidate for NIST’s call for additional signature schemes, which primarily aims
to standardize an alternative to lattice-based signature schemes. This makes
MAYO a good alternative in case lattice-based schemes are broken. However,
attacks have been found against multivariate schemes with specific parameter
sets, including one that affects the Round 2 submission of MAYO-2 [59].

SNOVA SNOVA is another multivariate scheme. That has also been affected by
several attacks. This underlines that the security of multivariate schemes is
actively being researched and not understood enough yet.

ML-DSA Finally, ML-DSA is the only suitable scheme that is already standardized
by NIST. This makes it easy to implement right now, but compared to Falcon,
this head start will likely not last long. ML-DSA does offer an intermediate
security level, and the smallest parameter set satisfies target level 2, but even
the smallest parameter set is more expensive for the RPKI than Falcon-1024.

Unfortunately, SLH-DSA and FAEST, as well as stateful signature schemes XMSS and
LMS [12, RFC8554]10, have impractically large signatures and expensive verification.
Their security reduces to well-known underlying hash functions (or AES in case of
FAEST), which makes them a secure option. However, their performance cost is too
high to be viable for the RPKI.

4.4.3 Conclusion

Considering all factors together, we find that Falcon is the most suitable candidate,
having already been selected for standardization, and offering the best performance.
The Falcon-512 parameter set is a good option, having minimal performance impact.
Falcon-1024 would also work well, but NIST level 1 suffices, already offering an increase
in traditional security compared to RSA-2048 (from 112 bits to at least 128). If a
higher security level is chosen, hash functions may need to be replaced as well.

If lattice-based schemes turn out to be insecure, MAYO or SNOVA could provide
an alternative. Hash-based schemes and FAEST are not practical, due to their sizes,
verification cost, and slow signing.

Throughout the rest of this thesis, we will focus primarily on using Falcon-512, but
using any of the alternatives would work very similarly.

10Keeping state for stateful signatures — which in many cases makes stateful schemes impractical
— is not an insurmountable problem in the RPKI. Nonetheless, the signature sizes make them poor
candidates.
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4.5 Hybridization

Since the hash-based signatures have turned out ill-suited, the RPKI will have to use
a post-quantum scheme whose security can not yet be confidently relied upon. To
mitigate this risk, a hybrid scheme can be used, combining a post-quantum scheme
with a traditional one. This guarantees that the combination is at least secure against
a traditional adversary, even if the post-quantum scheme is broken.

Several approaches to hybridization are possible, with slight differences in cost and
security. The security properties of various methods of combining schemes are discussed
in detail in [7].

Apart from the obvious requirement that forging a signature of a hybrid scheme
should be at least as hard as forging a signature for the strongest component, another
interesting property is non-separability. Simply put, given a hybrid signature, it should
not be possible to deconstruct this into a valid signature for one of the components.
This property can be further divided into strong and weak non-separability, with strong
non-separability (SNS) meaning that it is impossible to create a valid signature at all,
and weak non-separability (WNS) allowing the creation of a valid signature, as long
as it can be seen that the signature was constructed from a hybrid signature.

Many different constructions — known as combiners — can be used to turn 2 separate
signature schemes into a hybrid. We can describe a hybrid signing algorithm as SignH,
constructed from two components Sign1 and Sign2.

The simplest example is concatenation, which provides no non-separability by it-
self:

SignH(m) = Sign1(m)∥Sign2(m)

Additionally, [7] describes several alternatives that provide non-separability. While
various options exist, the most practical option for us is to simply use the concatenation
approach, hash the message, and add a label to the message before signing, for domain
separation. The domain separation here provides weak non-separability, but primarily,
separability is offered by the simple requirement that keys are not used for both
hybrids and individual signatures:

SignH(m) = Sign1(label∥m)∥Sign2(label∥m)

Such an approach — details about hashing the message and encoding of signatures
and keys are still being discussed — is proposed in [55]. This draft aims to standardize
hybrid signatures using ML-DSA, but in a way that easily extends to other post-
quantum components once they get standardized.11

A resulting hybrid algorithm can be treated as any single signature scheme: the
signatures and public keys behave just as those for other (single) algorithms. The
hybrid algorithms have their own algorithm identifiers that are independent of the
component algorithms, so they can be used as a drop-in replacement without changes
to protocols other than allowing the new algorithm. The structure of objects does not
need to change.

4.5.1 Other constructions

Many other constructions are possible, that have their own advantages, but are less
practical for the RPKI.

Among others, there are two reasons to use a different hybrid construction.

11At the time of writing, [55] seems close to being finalized, perhaps soon after the upcoming IETF
123 in July 2025, together with related drafts about use of ML-DSA and hybrids for ML-KEM.
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Backward compatibility A construction like that in [55] is not backward compat-
ible, in the sense that verifiers need to understand the hybrid algorithm. [7]
attempts to use different constructions that allow existing software to verify
only the traditional component signature, ignoring the post-quantum component.
However, the RPKI standards impose a strict structure12 that makes changes
to its specification and implementations necessary even for such attempts at
backward compatibility. Opting for a non-backward compatible construction,
that presents as a single atomic signature is a practical choice that keeps changes
to the specification minimal, only changing the set of allowed algorithms.

Performance For some specific combinations of component schemes, [6] shows meth-
ods to combine signatures such that the total size is (slightly) less than that of
two separate signatures. This can reduce the overhead of employing a hybrid
scheme, but comes at the cost of requiring modified versions of the component
algorithms.

For the RPKI, the simple concatenation with a label for domain separation is a good
choice that is easy to implement. It is also the only approach that is on the way to
being standardized (at least for ML-DSA).

4.5.2 Cost

When using a simple concatenation, the size of the composite signature is essentially
the sum of the sizes of the component signatures, possibly with a few bytes of overhead
for encoding. The same applies to public keys, and the verification and signing time
also consists of simply verifying/creating both halves of the signature.

Based on [55], the sensible traditional schemes to match with Falcon-512 or the
alternative NIST level 1 post-quantum components are Ed25519, RSA-2048 or RSA-
3072. With only 112 bits of security, RSA-2048 will be somewhat weak in a couple of
years. NIST does not recommend its use after 2030 [47], so considering the long time
a migration will take, it seems sensible to use a 128-bits traditional component. On
the other hand, we are proposing a hybrid, with the traditional component only being
a contingency, so perhaps the traditional component need not be strong.

Using the same metrics as in table 4.3, the predicted costs of using several hybrid pairs
are shown in table 4.5. Again, numbers are based on [78]. The sizes and verification
time for RSA-3072 are added by us.13

The trade-off between traditional components comes down to more CPU time for
verification (for Ed25519) or slightly longer downloading time. If cryptographic
verification is cached (4.4.1.3), Ed25519 is a good option. Otherwise, the increase in
verification CPU time (that if not cached, is repeated for every validation run) may be
more costly than the size difference between Ed25519 and RSA-2048. When comparing
Ed25519 to RSA-3072, it is less clear which option is better for validators.

Overall, we recommend that — if RP software maintainers agree to implement the
caching mechanism from section 4.4.1.3 — the hybrid of Falcon-512 with Ed25519 is
the best option. If verification caching is not implemented, there is no pronounced
winner.

12For example, an RPKI Signed Object must contain exactly one SignerInfo element [RFC6488].
Having two separate SignerInfo elements for two components of a hybrid is not currently allowed.

13The sizes are easily checked. Verification times are set as 2.2 times that of RSA-2048, based on
the difference between RSA-2048 and RSA-3072 in a simple local benchmark with openssl speed

-seconds 120 rsa. Like all of the speed benchmarks from [78], they should be taken with a grain of
salt.
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4.6 Multiple algorithms

So far, we have found that a hybrid with Falcon-512 is a good choice for a post-
quantum signature scheme in the RPKI. Our analysis of the performance impact was
based on assuming complete adoption, and allowing a single algorithm throughout the
RPKI.

Forgoing [RFC6916] (see chapter 6), it is also possible to have multiple algorithms in
the RPKI at the same time. There could be mixed use during a transition, multiple
algorithms can be chosen from freely even after a transition, or different algorithms
can be used for different use cases. Allowing the use of multiple algorithms can be
beneficial for several reasons.

4.6.1 Mixed certificates during migration

In chapter 6, we conclude that a migration using mixed certificates is the most
practical way to transition to post-quantum signatures. In such a migration, we allow
certificates where the subject is using a different algorithm than the issuer. So, during

Table 4.5: Estimated downloading and verification times for hybrid schemes. The
top rows, without hybridization, are directly from table 4.3 for comparison. The
cost of each component can simply be added together; for instance, the difference
between downloading for plain Falcon-512 and Falcon-512 + Ed25519 is the same as
the difference between ML-DSA-44 and ML-DSA-44 + Ed25519.

Estimated times (s)

Traditional
component

Post-quantum
component

Total
RPKI size

Download
(240 s)

Download
(14.5 s)

Verification
CPU time

RSA-2048 - 838 MB 240.0 14.5 13.0

- Falcon-512 1.4 GB 403.1 24.4 23.4

HAWK-512 1.4 GB 392.3 23.7 42.8

MAYO-1 1.4 GB 414.1 25.0 44.3

SNOVA-(24, 5, 4) 1.1 GB 322.0 19.5 47.3

ML-DSA-44 3.0 GB 846.1 51.1 34.2

RSA-2048 Falcon-512 1.7 GB 491.5 29.7 36.4

HAWK-512 1.7 GB 480.8 29.0 55.8

MAYO-1 1.8 GB 502.6 30.4 57.3

SNOVA-(24, 5, 4) 1.4 GB 410.5 24.8 60.3

ML-DSA-44 3.3 GB 934.6 56.5 47.2

RSA-3072 Falcon-512 1.9 GB 534.9 32.3 52.0

HAWK-512 1.8 GB 524.1 31.7 71.4

MAYO-1 1.9 GB 545.9 33.0 72.9

SNOVA-(24, 5, 4) 1.6 GB 453.8 27.4 75.9

ML-DSA-44 3.4 GB 977.9 59.1 62.8

Ed25519 Falcon-512 1.5 GB 421.1 25.4 61.0

HAWK-512 1.4 GB 410.3 24.8 80.4

MAYO-1 1.5 GB 432.1 26.1 81.8

SNOVA-(24, 5, 4) 1.2 GB 340.1 20.5 84.9

ML-DSA-44 3.0 GB 864.2 52.2 71.8
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the migration, multiple algorithms are allowed to be used at the same time, until at
some point an old algorithm is phased out.

This approach makes migrating easier than the alternative ([RFC6916]) where entirely
disjoint RPKI trees are constructed for the old and new algorithms. It allows an
alternative transition that need not be globally coordinated or top-down.

4.6.2 Fallback algorithms

Two different algorithms B and C could be specified as mandatory-to-implement as
relying party, even if CAs are expected to prefer one of them.14

In case one of the two algorithms is found to be vulnerable, already having another
algorithm that will be accepted by RPs enables CAs to quickly switch to the other
algorithm. This way, requiring RPs to already support an additional algorithm provides
a safety net. Switching to the second algorithm is much faster without awaiting IETF
response and the lengthy process of updating all relying parties.

For the transition to post-quantum signatures, such a fallback can be particularly
useful. Various hardness assumptions are used for different candidate algorithms.
While our recommendation from section 4.4.3 is to use the lattice-based Falcon, it’s
conceivable that lattice-based cryptography turns out to be insecure. In that case,
it would be very valuable to already have support for a fallback algorithm that is
not based on lattice problems, such as MAYO, even if it is less attractive in terms of
performance.

4.6.3 Specialized algorithms per use case

The single algorithm currently specified in [RFC7935] is used for a variety of purposes.
The primary purpose (in the RPKI content) is performance-critical, impacting sizes
and verification time of hundreds of thousands of objects. Other use cases have
different requirements and could benefit from different algorithms.

4.6.3.1 RFC8183 trust anchors

A clearly different use case is for authentication of communication between CAs, and
from CAs to repositories. For this communication, [RFC8183] is used to establish a
trust anchor. Messages between parties are signed using this TA.

This communication is not performance-critical, as it involves only two parties, and a
low frequency of messages. The trust anchors are also very long-lived. So, for this
use case, it could be considered to use a more secure algorithm but less performant
algorithm than for the rest of the RPKI. For example, it might be sensible to use
something like Falcon-1024 + ECDSA P-521, or even SLH-DSA for the BPKI TA. While
hash-based signatures would be acceptable in terms of performance, and preferable
from a security perspective, a trade-off should be made to keep the set of algorithms
that need to be implemented small. That may make Falcon-1024 more attractive when
Falcon-512 is already used for the rest of the RPKI.

4.6.3.2 Stronger keys for trust-anchors

A very similar case can be made for the trust anchors in the RPKI themselves. As
these are hard to update,15 it is sensible to use strong crypto there. Performance is
not much of a concern as there are only a handful of TA key pairs, each validated only
once per validation run. As the RIRs actually use a few key pairs (e.g. an online CA

14One algorithm may be more efficient or otherwise more attractive than the other, or the algorithms
profile could even recommend CAs to use a particular single algorithm. The benefit of having two
algorithms comes only from RPs — not CAs — being prepared to accept both.

15The TA public keys are in TALs that are often shipped together with RP implementations.
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as the only subordinate under the offline TA) for security, a stronger algorithm could
also be applied to one more layer of the hierarchy.

4.6.3.3 Short-lived objects

Finally, the opposite could be done for short-lived key pairs. In particular, signed
objects in the RPKI often contain a one-time-use EE certificate. This is a certificate
for a key pair that is used to sign only one object.

For short-lived objects such as Manifests, the algorithm of the one-time key pair
embedded in the signed object could be chosen to be short and not quantum-resistant,
assuming that a quantum attacker needs considerable time to break traditional
cryptography.

While this approach can help performance, it is not without risk, and still makes use of
a superfluous, ephemeral key pair. In chapter 5 we propose an alternative that removes
this redundant public key and second signature, while still retaining the possibility to
make use of the X.509 revocation system.

An instance of this idea was suggested in the conversation following [71], using elliptic-
curve cryptography for EE certificates. Here, the different signatures are used only in
EE certificates, not because they are weaker (though they are indeed not quantum-
resistant) but instead to avoid having to migrate CAs’ resource certificates.
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Chapter 5

Redundancy in RPKI
objects

In section 4.6 we showed that there are reasons to support multiple signature algorithms
at the same time. One of the reasons for this is to allow using specialized algorithms
for specific use cases, to improve security where performance is not critical, or to
improve performance where possible.

A special case where it might make sense to use a different signature algorithm than
in the rest of the RPKI is in signed objects with so-called ‘one-time-use’ end-entity
certificates. All RPKI signed objects ([RFC6488]) contain an EE certificate that
certifies a key pair used to sign the object itself. This key pair is almost always used
only once, which enables revocation of individual objects through the EE certificate
for its one-time key. This is wasteful.

We suggested in 4.6.3.3 that for short-lived EE certificates, a shorter, faster, but
weaker signature scheme could be used than for the rest of the RPKI. In this chapter,
we define a different method to get rid of the overhead of including a second signature
and a public key in each signed object. We introduce a “null scheme” that can replace
the signature algorithm specifically in one-time-use EE certificates. This is both more
secure and more efficient than using a weaker signature scheme.

5.1 One-time-use EE certificates

Before introducing an efficient alternative for the signatures on signed objects, let us
examine the current situation and its cost.

5.1.1 One-time-use for revocation

The purpose of using one-time-use EE certificates, instead of directly signing objects
with the CA’s key, is to allow for revocation of individual objects, using the existing
X.509 CRL mechanism [RFC5280].

Revocation is required to prevent replaying old objects, while still supporting long
lifetimes of each object. Making objects inherently short-lived is no alternative:
validators would need to frequently fetch numerous new objects, and objects expire
earlier if a repository is unavailable. That has major performance implications and
makes temporary unavailability of a repository problematic.1

The use of EE certificates for signed objects is defined in [RFC6487] and [RFC6488]:

1Unavailability of a repository currently only means that changes are not getting distributed.
Long-lived objects remain valid, so the latest state of the RPKI is used. If objects were short-lived,
after a few hours of unavailability, the latest state of the RPKI would expire instead, disabling the
protection it offered. That would make denial-of-service attacks on repositories an attractive way to
bypass ROV filtering.
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Signed object [RFC6488]

EE cert
[X.509]

Res. cert
[X.509]

CRL Content

CMS sig.

signs

signs

signs (only)revokes

Figure 5.1: Structure of a signed object. A signed object contains an EE certificate
issued by a CA. The EE certificate’s subject is a key used only once to sign a CMS
signed-data structure with the object’s content. The CA’s CRL can revoke the signed
object by revoking the one-time-use EE certificate.

The private key associated with an EE certificate is used to sign a

single RPKI signed object, i.e., the EE certificate is used to

validate only one object. The EE certificate is embedded in the

object as part of a Cryptographic Message Syntax (CMS) signed-data

structure [RFC6488]. Because of the one-to-one relationship between

the EE certificate and the signed object, revocation of the

certificate effectively revokes the corresponding signed object.

[...]

EE certificates used to validate only one instance of a signed

object, and are not used thereafter or in any other validation

context, are termed "one-time-use" EE certificates.

Each signed object includes exactly one EE certificate, that certifies the key pair used
to sign the CMS signed-data structure that contains the actual content. For almost
all signed objects, this is a one-time-use certificate, as that enables using the X.509
revocation mechanism to prevent replay attacks when objects are withdrawn.2 An
overview of the structure of a signed object is shown in fig. 5.1.

In principle, an EE certificate could be ‘one-time-use’, yet still have a subject key that
is not used only once. The wording from [RFC6488] above can be misleading in this
regard, as keys must in fact be used only once, not just certificates:

• For object m1, a key pair (pk1, sk1) is generated and an EE certificate c1 is
created. m1 is signed using sk1, and c1 is attached to m1 to allow validation.

• For another object m2, the same key pair (pk1, sk1) is reused, but a new EE
certificate c2 is created. m2 is signed using sk1, and c2 is attached to m2 to
allow validation.

In this hypothetical scenario, each EE certificate is used only once, but the correspond-
ing private key is reused. In reality, this should never occur: it allows for replay once
one of the objects is revoked.

• The issuer revokes m1 by adding a CRL entry for c1.

• An attacker can now replay m1, by attaching c2 to it. The signature from sk1
on m1 still validates using c2, and c2 has not been revoked. This is possible
because the signature on m1 does not cover the attached certificate: c1 can be
replaced by c2 without invalidating the signature.

Consequently, for revocation of individual signed objects to be effective, it is necessary
that every signed object has a one-time-use key pair, not only a one-time-use EE

2An exception is for Manifests ([RFC6486]), where ‘sequential-use’ EE certificates are also allowed.
See section 3 of [RFC6486]. However, one-time-use certificates are allowed and common, and with
our proposal are more efficient.
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certificate. In the specification cited above, “The private key associated with an
EE certificate is used to sign a single RPKI signed object” is a stronger statement
than “The EE certificate is used to validate only one object”. Throughout the RPKI,
“one-time-use EE certificates” should be understood as one-time-use key pairs, not just
certificates.

5.1.2 Cost

A result of the approach of including EE certificates in each signed object is that
signed objects are larger than they need to be.

Currently, a signed object contains:

• The object content itself.

• A signature over the object content, using the one-time-use private key associated
with the EE certificate.

• The one-time-use public key inside the EE certificate.

• A signature from the issuer over the one-time-use public keys and some EE
certificate attributes, also as part of the EE certificate.

• And some metadata and encoding overhead, both in the CMS structure and the
X.509 EE certificate.

This includes two signatures and one public key, of which one signature and the public
key are only present to fit the revocation system.

In the current RPKI, we find a median size of ROAs of 2125 bytes.3 Out of this,
2 · 256 + 272 = 784 bytes are used for the cryptographic material: over a third of the
total size.

When a post-quantum algorithm is introduced, signatures and public keys will grow
even larger. For example, assuming the same median-sized ROA, and the hybrid
Falcon-512 + RSA-2048, the size of the ROA becomes roughly 4354 bytes, including
3031 bytes of cryptographic material. So, the overhead of cryptographic material may
increase to almost three-quarters of a ROA.

Therefore, it would be very attractive if the overhead can be reduced from two
signatures and a public key, to as close as possible to only the one signature that is
really needed to sign the object.

5.2 Removing the one-time-use signature

5.2.1 Requirements of the one-time key pair

The crucial observation that enables us to avoid including a large signature and public
key in each object, is that the requirements of the one-time-use key pair are much
more relaxed than those of general digital signatures.

When a private key is guaranteed to be used only once, a One-Time Signature (OTS)
scheme can be used. The most well-known instantiation is Lamport OTS [41], which
is based on a one-way function. This construction is considered quantum-safe, and
variants of it are used in the construction of hash-based post-quantum signatures like
XMSS and SLH-DSA [12, 5].

For typical digital signatures, the EUF-CMA or the stronger SUF-CMA security model
is used. Here, an attacker is allowed to adaptively query a signing oracle many times,
with the goal to present a forged message-signature pair (m′, σ′) where either m′ was

3This is the median size of ROAs from the snapshot used for table 4.1.
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not queried before (EUF-CMA), or the pair (m′, σ′) was never returned from a query
(SUF-CMA).

The corresponding model for OTS schemes is similar but allows only one query to the
signing oracle. The attacker can query a signature for any message m, getting σ in
response. The attacker must then present a pair (m′, σ′) where m′ ̸= m (the one-time
equivalent of EUF-CMA), or where (m′, σ′) is not (m,σ) (the one-time equivalent of
SUF-CMA).

When a private key is used to sign only one object and then discarded, the one-time
model is sufficient as there is no way for the attacker to query a signature for any
other message.

5.2.1.1 Signed data does not depend on the public key

Using an OTS scheme for the one-time-use key pairs is reasonable, but does not
do much for performance as hash-based OTS schemes still yield large signatures or
public keys. We can do even better, because OTS schemes still satisfy a fundamental
requirement that we don’t need. For both normal and one-time signatures, the public
key can be made before the message to be signed is known. This is not needed in our
peculiar case.

In our use case, the public key is included in the EE certificate. This EE certificate
gets signed using the CA’s private key, and is then attached to the signed object in
the certificates field of the CMS signed-data structure.

The signature made using the one-time key, is over a digest of the signedAttrs field
of the CMS signed-data structure, which in turn contains, among other things, a digest
of the actual object content. Importantly, the certificates field is not an input the
signature algorithm [RFC6488, RFC5652]. So, for our particular case, the one-time
public key does not need to be known before the message is signed.

In our case, key generation happens at the same time as the signing. Also, the signature
in the CMS signed-data structure is on the content, but not the attached certificate
[RFC5652]. A signed object can be viewed as(

cert, data, Signskots
(data)

)
where cert is the EE certificate:

cert =
(
pkots, attrs, Signskca

(pkots, attrs)
)

Here, (skots, pkots) is the ephemeral one-time-use key pair, attrs are the attributes
included on the EE certificate. The signature Signskca

(pkots, attrs) is the signature
from the CA over the public key and attributes.

Because the input to the signature using the one-time key does not depend on the
one cert or specifically pkots, the public key can be generated based on the message it
signs.

5.2.2 Null scheme

We define a more limited combination of the classic Sign and KeyGen algorithms, that
meets the relaxed requirements for our use case: SignOnce, taking a message as input,
returning a tuple (pk, σ) as output. So, there is no private key, and the public key is
generated together with the signature.4 While an implementation of SignOnce is not
sufficient for a general (one-time) signature scheme, it is all we need.

4For a normal signature scheme with algorithms KeyGen, Sign, SignOnce is simply KeyGen followed
by Sign.
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There is a very simple algorithm that satisfies our unusual requirements. Using an
underlying hash function H, we define our public key to be the hash of the message,
and the signature to always be null. Here, H should be collision-resistant. Second
pre-image resistance would suffice if we assume that the attacker cannot cause a CA
to sign a message of their choice.

SignOnce(m)
def
= (H(m), null)

Verification is simply checking that the message hashes to the public key:

Verifypk(m,σ)
def
= (σ = null ∧H(m) = pk)

A signed object using our null scheme would look like (cert, data, null) where

cert =
(
H(data), attrs, Signskca

(
H(data), attrs

))
The one-time public key in cert is H(data), and the CMS signature is null.

Despite this being a useless signature scheme in general, it is secure. Given a public
key:

• It is impossible to find a different signature for the same message, as there exists
only one unique signature.

• Finding a different message for which a signature can be forged reduces to finding
a collision in the underlying hash function.

For a trivial proof, consider an attacker who has two distinct valid pairs (m,σ) and
(m′, σ′) for the same public key pk. As the space of possible signatures contains only
null, it must be that m ̸= m′. As both pairs are valid, H(m1) = H(m2) = pk, so the
attacker has a collision in H. If we do not allow the attacker to choose m1 and hence
pk, but instead give the attacker m1 and pk,5 finding m2 breaks not only the collision
resistance, but also the second pre-image resistance of H.

Note that signed objects already depend on collision or second pre-image resistance of
a hash function. The signature in the signed-data structure is actually made over a
digest of the content, not directly over the content itself. This makes using our null
scheme at least as secure as the current reliance on both a normal signature scheme,
and a hash function. The collision an attacker needs to break our scheme directly also
breaks the hash used as input to the current proper signature scheme.

5.2.3 Use in signed objects

Our null scheme can be used as a drop-in replacement for a normal signature algorithm
in the signed-data structure of a signed object. Changing the RPKI to use our approach
involves only an algorithm rollover. By treating our scheme as any other signature
scheme, the existing structure with an EE certificate that can be revoked can be
maintained. It is not necessary to implement a new revocation system, and [RFC6488]
does not need to be updated.

5.2.3.1 Implementation details

While we have defined our SignOnce algorithm to return a hash of its input for
easy analysis, its implementation when used to sign CMS signed-data can be done
differently.

The process of signing a CMS signed-data structure for RPKI signed objects is as
follows:

5This corresponds to finding a new signed object for one of the existing non-revoked EE certificates
in the RPKI.
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• The content is hashed using a digest algorithm. The result is in the message-digest
attribute in the signedAttrs field of the CMS structure.6

• The signedAttrs field (which includes the message digest) is encoded and
hashed once more [RFC5652].

• The resulting digest over signedAttrs is the input to the signature algorithm.

So, regardless of what signature algorithm is used, there is also a digest algorithm
used to construct the input to the signature algorithm.

Our proposal is to replace the signature algorithm, but we already know that it
only gets digests as input to be ‘signed’. Therefore, the actual algorithm to use can
be

SignOnce(m)
def
= (m, null)

where m is always the digest of the signedAttrs field. This avoids doing one more
hash operation and means that we do not need multiple distinct instantiations of our
null scheme for different digest algorithms.

5.2.4 Cost reduction

The cost of our alternative depends on the underlying hash function. For RSA, as
well as for the NIST level 1 or 2 post-quantum algorithms we suggest, this would be
SHA-256.

The size of the null scheme’s public keys is the same as the size of the hash output:
32 bytes for SHA-256. The signature is empty, so an octet string of 0 bytes.

When compared to using RSA, the null scheme saves 272 + 256− 32 = 496 bytes per
signed object, leaving 256 + 32 = 288 bytes of cryptographic material. This reduces
the size of the median ROA from 2125 bytes to 1629 bytes. On the whole RPKI from
table 4.1, 172 MB could be saved, out of 838 MB in total.

When compared to using Falcon-512 + RSA-2048, the null scheme saves 1169 + 922−
32 = 2059 bytes per signed object, leaving 922 + 32 = 954 bytes of cryptographic
material. The median ROA shrinks from 4354 to 2295 bytes, almost compensating for
algorithm rollover. On the whole RPKI, 717 MB of the 1.7 GB total from table 4.5
could be saved. This amounts to 82% of the increase in total size when switching
from RSA-2048 (838 MB from table 4.1) to Falcon-512 + RSA-2048. For even bigger
signature algorithms, the savings are even larger.

Besides the reductions in size, our null scheme also simplifies the cryptographic
verification. As we do not even need to introduce another call to the hash function (see
section 5.2.3.1), we entirely avoid 1 of the 2 signature verifications per signed object,
or roughly 35% of the total number of signature verifications. For the Falcon-512 +
RSA-2048 hybrid, this leads to a verification CPU time of 23.7 seconds, as opposed to
the 36.4 seconds from table 4.5 without the null scheme.

Overall, the null scheme can make the RPKI substantially more efficient, which can
be paired with the introduction of post-quantum signatures to nearly compensate for
the cost increase of the new signature algorithm.

5.2.5 Conclusions

The null scheme idea is a drop-in replacement that saves almost one signature and a
public key in size and a signature verification in computation per signed object. This
is a substantial improvement over the current approach, with benefits that become
more pronounced when larger and slower signature algorithms are used.

6While optional for general signed-data structures, this field is mandatory in [RFC6488] objects.
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The security of the null scheme matches the current dual-signature approach, as both
ultimately depend on the collision and second pre-image resistance of the underlying
hash function, as well as security of the signature algorithm used to sign the EE
certificate. The null scheme simply removes a redundant signature while maintaining
exactly the same security properties.

Our proposal is a simple drop-in replacement that can nearly compensate for the
size increase induced by switching to post-quantum algorithms. The precise savings
depend on the specific post-quantum algorithm chosen. Similarly, it can reduce the
number of signature verifications by a third, all without affecting security. Hence, we
recommend introducing it together with post-quantum algorithms.
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Chapter 6

Algorithm migration
process

In the previous chapters, we have found that migrating the RPKI to a post-quantum
signature algorithm is necessary, and found a suitable choice for that algorithm: a
hybrid with Falcon-512 as post-quantum component, as well as some alternatives. We
have also argued that allowing multiple algorithms at the same time can be beneficial.
Considering the end goal of using post-quantum algorithms, the next question is: how
do we get there? In this chapter we, discuss this transition.

6.1 RFC6916

In the early days of the RPKI, the Secure Inter-Domain Routing (SIDR) working group
of the IETF defined an algorithm agility procedure in [RFC6916]. The core principle of
this approach is that “mixed” certificates are prohibited. That is, a resource certificate
with an algorithm A subject is to be signed only with an algorithm A signature, and
an algorithm B subject only with an algorithm B signature, implying a top-down
migration process. Such a migration is necessarily towards a single new algorithm;
migrating towards a state where multiple algorithms can be chosen from by CAs is
not supported.

The procedure starts by publishing an update to [RFC7935] defining the new algorithm
B, as well as a new timeline document, that defines 5 global milestone dates. These
dates are:

CA Ready Algorithm B Date: After this date, all non-leaf CAs MUST be

ready to process a request from a child CA to issue a

certificate under the Algorithm Suite B. All CAs

publishing an [RFC6490] Trust Anchor Locator (TAL) for

Algorithm Suite A MUST also publish the correspondent TAL

for Algorithm Suite B.

CA Go Algorithm B Date: After this date, all CAs MUST have reissued

all their signed product sets under Algorithm Suite B.

RP Ready Algorithm B Date: After this date, all RPs MUST be prepared

to process signed material issued under Algorithm Suite

B.

Twilight Date: After this date, a CA MAY cease issuing signed

products under Algorithm Suite A. Also, after this date,

an RP MAY cease to validate signed materials issued under

Algorithm Suite A.

End-Of-Life (EOL) Date: After this date, Algorithm Suite A MUST be

deprecated using the process in Section 10, and all

Algorithm Suite A TALs MUST be removed from their

publication points.
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Figure 6.1: Timeline of RPKI trees throughout an [RFC6916] algorithm roll. The
nodes represent resource certificates: “1 A” is a resource certificate for the algorithm
A public key of CA 1, and the edges indicate issuing certificates to children. During
phase 1, a duplicate tree is constructed top-down. When this is done, RPs can switch
to validating the B tree, and finally, the A tree can be removed.

In “Phase 1”, between CA Ready Alg. B date to CA Go Alg. B Date, every CA must
issue copies of all its products under both the old and new algorithms. That is, by
CA Go Alg. B Date, there should be two separate RPKI trees — one using only the
old algorithm A and the other using only new algorithm B — that contain identical
meaning. The creation of the algorithm B tree takes place in a top-down fashion:
a CA can only get its algorithm B certificate once its parent has also obtained an
algorithm B certificate.

The distinct copies of the RPKI are supposed to be maintained (kept synchronized)
throughout “Phase 2” and “Phase 3” at least until the Twilight Date. By that time,
every relying party must have been updated to accept the Algorithm B tree, and
CAs may stop maintaining the Algorithm A tree. An example of this is shown in
fig. 6.1.

We believe this procedure to be operationally infeasible, due to the extensive coordi-
nation required, the need to maintain two parallel trees, and the exclusion of allowing
multiple algorithms. Several software implementers and RIR operators have expressed
similar concerns, and stated that they would prefer an alternative that uses mixed
certificates [9, 10]. Furthermore, there has been a proposal to introduce EdDSA or
ECDSA signatures, particularly in a mixed setting [71]. This resulted in experimental
ECDSA support in rpki-client, that allows mixed certificates.1

6.1.1 Coordination

The first problem is the need for global coordination. The 5 dates, expected to take
place over the course of several years, are to be published in a Best Current Practice
RFC. This means that they need to be planned far in advance, and are hard to
postpone if the need arises. It is unusual or even unprecedented to plan future dates
in an RFC.2

Additionally, the milestone dates are strict deadlines that every CA and RP must meet.
If a significant number of CAs or RPs is not ready by a milestone, the milestone needs
to be postponed. Considering the fact that several repositories are still only available
over rsync, and that some CAs still publish expired objects, it seems inevitable that a

1https://github.com/openbsd/src/commit/ec1cc732eea452b2c8e9f1282111d9cc0104e4b6
2An exception is the legacy [57] that contained future dates. However, this predates the formal

internet standards process, and the milestone dates were relatively nearby.
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handful of CAs and relying parties will not be ready in time, regardless of how much
time is given.

Finally, the top-down process to create an algorithm B tree is a limitation that can
cause delays.

• If one CA operator wants to migrate at some time, but its parent CA has not
migrated yet, the operator must wait until the parent has migrated. Delays on
any level in the hierarchy cascade down, so the total duration can be needlessly
long. Issues at low-level CAs can also become apparent very late in the process,
making it plausible that the milestone dates need to be postponed at the last
moment. Considering that the timeline and any changes to it are to be published
as standards-track RFCs, rescheduling is at best a lengthy process.

• The top-down process also makes it hard to experiment with the new algorithm.
Since an algorithm B certificate can only be issued under an algorithm B CA,
a low-level CA cannot do real-world experimentation on a small scale: real-
world experimentation can only commence when the algorithm B tree is under
construction or complete.

Overall, an approach with multiple global milestone dates is risky, the top-down process
could make the transition slower than necessary, and makes early experimentation
impossible.

6.1.2 Parallel trees

Another drawback of the procedure is the use of disjunct RPKI trees that must be
kept synchronized. The impact of this is twofold.

• Most importantly, it is a complicated task for CAs to perform. Current RPKI
CA software makes it easy to act as a CA, but the software and standards
([RFC6492]) do not currently support the synchronization of separate trees.
Keeping two trees synchronized requires significant implementation effort from
CAs, and likely even a new provisioning protocol [10, 9]. Having to do so for
several months or years is a significant burden. The complicated changes to
standards and their implementations take time, and can also make operators
reluctant to start migrating, delaying the transition.

• Second, the existence of disjunct trees has performance impact. While in
chapter 4 we have assumed a complete transition to a new algorithm, the
[RFC6916] procedure involves a significant time (years) during which both trees
are available. RPs do not need to process both trees, but it is reasonable to
assume that some RPs will attempt to do so, to monitor for any differences in
the content of the trees. The procedure says:

[...] it is RECOMMENDED that Suite B capable RPs fetch and

validate Suite B products sets during Phase 2. If an RP encounters

validation problems with the Suite B products, it SHOULD revert to

using Suite A products. RPs that are Suite B capable MAY fetch both

product sets and compare the results (e.g., ROA outputs) for testing.

In Phase 3, all RPs MUST be Suite B capable and MUST fetch Suite B

product sets. If an RP encounters problems with Suite B product

sets, it can revert to Suite A products.

For the duration of at least phases 2 and 3 (likely several years), this means
that the size of the RPKI for publishers is doubled in terms of the number of
files. Whereas our size and time estimations in section 4.4.1 concern a single
algorithm B tree, during the transition, publishers and some RPs will need to
work with the sum of the current (algorithm A) tree and the new (algorithm B)
tree.
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6.1.2.1 Estimating performance cost

In chapter 4 we have estimated performance cost of various algorithms in a single tree.
The temporary cost of working with duplicated trees is a bit harder to predict.

Assuming our proposed Falcon-512 + RSA-2048 hybrid as algorithm B, that tem-
porarily leads to a total size of 2.6 GB, instead of 1.7 GB for the new tree alone. But
this does not translate directly to the downloading and verification times.

Unlike in our estimations for a single tree, the two separate trees will have separate
publication points, leading to differences in the fraction of the spent time that does
not depend on the signature algorithm: there are more repositories, not only larger
downloads per repository.

We can predict a signature verification CPU time of 36.4 s + 13.0 s = 49.4 s for the
combination of the two trees, but this does not include the algorithm-independent
fraction of the total processing time. We assumed in chapter 4 that only the signatures
would be replaced, and the number of files and their content would remain exactly the
same. With a duplicate tree, this assumption does not hold, and the actual cost of
keeping the old tree around is more than just the + 13.0 seconds of CPU time.

Likewise, the added cost of downloading will be considerably more than what one
would expect based solely on the total size. Not only the total data transfer increases,
but also the number of requests, which we considered constant in 4.2.1.

At any rate, there is a significant performance penalty for some RPs, and increased
cost for hosting repositories.

6.1.3 Design

The choice for a top-down migration without mixed certificates was based on several
fundamental assumptions, and some findings that follow from these assumptions.

6.1.3.1 Only one current algorithm

The algorithm agility procedure fundamentally assumes that after migrating, there
should be only one allowed algorithm. That is, when migrating, it is not only necessary
that some CAs start using a new algorithm, but also that all CAs stop using the old
algorithm. So, the procedure treats introducing a new algorithm and deprecating the
old one as inseparable. In 4.6 and 6.3.1 we discuss this, and show that a state where
multiple algorithms are allowed could be beneficial. Migration to such a state cannot
be done with the procedure in [RFC6916].

6.1.3.2 RPs update last

Relying parties are expected to be the last to change, only after all CAs have switched
to provide products under the new algorithm. Thus, it would be necessary to provide
a full algorithm A RPKI tree for a long time, until every RP has changed to support
algorithm B.

Indeed, it stands to reason that there will be RPs that take a long time before updating,
and CA operators may be more actively involved in the RPKI, such that they can be
expected to update their software sooner. After all, there are simply far fewer parties
actually acting as CA (not using a hosted CA service) than there are RPs.

On the other hand, while this was not known when the algorithm agility procedure
was designed, we now know that nearly all RPs use one of a handful of RP software
implementations [38, 40]. Thus, updating RPs may not be as difficult as was assumed,
consisting of minor changes to these few implementations, and waiting for the operators
to perform a routine software update to a version that includes these changes.
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Conversely, we can nowadays also observe that there are CAs that are not actively
maintained: several repositories are frequently unreachable or contain no valid objects
[72]. These CAs could delay the migration process, although those that do not
have valid products anyway are not a good reason to postpone a planned milestone
date.

6.1.3.3 Exponential growth

Based on the above assumptions, it was observed that allowing mixed certificates (alg.
A parent signing alg. B child or vice versa) could lead to exponential growth of the
RPKI, in particular since RPs would update last, requiring an all-A RPKI tree to be
maintained for a long time.

Consider CAs X, Y and Z. If mixed certificates are allowed, each CA could have a
key for both algorithms A and B. Then, X could sign certificates for both keys of
Y , using both keys of X. Similarly, Y could sign certificates for both keys of Z, and
using all 4 of the certificates from X for Y . This way, there can be exponentially many
certificates in the RPKI. Hence, the idea of a mixed tree was rejected altogether [36,
35].

Note however, that there is no reason for CAs to request or issue most of these
options:

• Validators that understand only algorithm A can only accept all-A certification
paths. So, CAs could request or issue A certificates on A keys for compatibility
with old RPs.

• Other than that, B should be more secure, so CAs should prefer to request or
issue B certificates on B keys wherever possible.

So, there is no incentive for any CA to have more than 2 different certificates: one
from an A issuer on an A key (for backward compatibility), and the other from a B
issuer on a B key, or from an A issuer on a B key if the parent does not have a B
certificate yet. Hence, exponential growth seems unlikely in practice.

6.1.3.4 Bottom-up impossible?

There was also the idea that a CA could not unilaterally decide to change its certificate
to a new algorithm, because the parent CA needs to be able to verify the proof of
possession of the new algorithm key. Indeed, the parent needs to verify an algorithm
B signature, but it is not necessary that it itself has an algorithm B certificate. To
support a bottom-up migration, it is only needed that a parent updates its software
to handle algorithm B verification, which is a simple local change with no risk of
invalidating the CA’s published products.

6.1.3.5 Alternative

The fundamental assumptions underlying the procedure did not go unchallenged.
In particular, in response to a draft [28], Brian Dickson questioned the idea that
only a single algorithm should be allowed, and that a globally coordinated top-down
migration is inevitable [21]. During a lengthy, heated discussion on the mailing list,
he suggested, among other things, that introducing algorithm B could be separate
from deprecating algorithm A. Dickson proposed a simpler alternative, that does not
require global coordination and a top-down transition [19, 20].

In the end, it appears that the fundamental disagreement between Dickson and the
RFC’s authors was not resolved. However, the alternative did not get much traction,
and after 2 years with small textual changes and no other considerable objections on
the mailing lists, the draft was published [43, 44].
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In sections 6.2 and 6.3, we work out Dickson’s alternative, and argue that, considering
the current state of the RPKI, it seems to be more practical than [RFC6916].

6.2 Mixed-tree approach

In the previous section, we have seen the standardized procedure for algorithm agility,
that works top-down, without allowing mixed certificates. Now, we propose an
alternative, based closely on Dickson’s proposal [19, 20]. In contrast to [RFC6916],
this alternative:

• treats introducing new algorithm B and deprecating old algorithm A as separate
processes;3

• allows mixed certificates, where an algorithm A parent CA can sign a B subor-
dinate, and vice versa;

• thus enables a laissez-faire approach, where CAs can individually decide to
switch to another algorithm.

The core principle of this approach is the fundamental assumption that, before
widespread migration of CAs to use new algorithm B, all relying parties are capable of
validating algorithm B signatures. In section 6.3.2 we further examine this assumption.
Consequently, it is permissible that during the transition, there is no all-A RPKI tree.
That is, CAs need not maintain an algorithm A key issued by an algorithm A parent.
This, in turn, avoids the theorized ‘exponential growth’ from section 6.1.3.3, or the
need to maintain two separate copies of the RPKI.

In our proposal, CAs can unilaterally decide to switch between two algorithms,
essentially with a normal [RFC6489] key roll. This naturally also makes it possible to
allow CAs to choose from multiple algorithms as discussed in section 4.6.

Since introducing a new algorithm and removing an old one can be seen as separate,
we describe three parts of the migration process separately. First, we show from a high
level how introducing a new algorithm works. Then, we propose measuring methods
to track support in validators. Next, we show precisely how a single CA can migrate
between algorithms, and finally, we discuss deprecation of an old algorithm.

6.2.1 Introducing algorithm B

When a new algorithm is to be introduced, three phases can be distinguished, although
no milestone dates need to be defined in advance. Examples of part of the RPKI
throughout a mixed-tree transition are shown in fig. 6.2.

Phase 0 This is the steady state before the introduction of the new algorithm.
Towards the end of this phase, the new algorithm (or set of algorithms) is agreed upon.
Drafts for a new algorithm document are being written, but nothing is published yet.
Still, there could already be early experimentation in the real world by having a test
CA using A issue a certificate to another subordinate test CA using B. RP software
maintainers may already publish updates with support for the new algorithm.

Phase 1 Phase 1 starts with the publication of the new algorithm document that
obsoletes [RFC7935] and defines the new algorithm B. This document allows the use
of algorithm A as well as B, optionally with a recommendation to issue only with B.
In particular, it requires relying parties to accept both algorithms.

During phase 1, RPs need to update to accept algorithm B signatures. Further-
more:

3Thus, it supports a steady-state where multiple algorithms can be used, rather than assuming
the goal that only one algorithm is allowed while not in a [RFC6916] transition.
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Figure 6.2: Timeline of an RPKI tree throughout our transition with mixed certifi-
cates. A leaf CA can be used early on for experimentation (e.g. ‘3 B’ being the first B
CA). During phase 2, all CAs can transition in any order. The final all-B tree may be
reached freely, or only after officially deprecating algorithm A.

• CAs may update to be able to verify algorithm B signatures. Pairs of CAs may
start using algorithm B for their bilateral communication (using [RFC8183]),
and parents can become capable of verifying algorithm B proofs of possession,
that already makes them capable of issuing A certificates to B subordinates. All
of these changes have strictly local impact. No B products need to be published
for this.

• Ideally, the RIRs already publish new TALs for algorithm B trust anchor
certificates, even though these are not yet usable (the certificate they point to
is not used to issue anything yet and the current A TALs remain in use). This
allows the new set of TALs to be included in RP software updates.

Real-world experimentation can take place using a ‘leaf’ CA. A normal CA4 signs a
certificate for a testing CA that has a B key. This enables testing and monitoring the
readiness of RPs for the new algorithm. In section 6.2.2 we present several methods of
measuring whether RPs are indeed ready to validate B products. These measurements
are crucial to determine when the next phase can start.

Phase 2 When enough RPs are known to accept algorithm B, CAs can widely start
switching to algorithm B. We propose a wide range of methods to monitor for this in
section 6.2.2. Each CA can individually decide whether and when to switch.

The algorithm rollover for an individual CA is detailed in section 6.2.3. The only
requirement for a subordinate CA to switch to algorithm B is that its parent CA is
capable of verifying algorithm B proofs of possession; not that the parent already has
a B key. Readiness of parent CAs to issue for B subordinates can be communicated
out-of-band.5

From the start of phase 2, (virtually) all RPs can process B, so there is no reason for
a CA to have both A and B certificates and duplicate signed objects. Thus, there is
no exponential growth or parallel tree maintenance. Parent CAs can also enforce this
by issuing only a single certificate6 for each subordinate. Similarly, — although this
might be unjustifiable — parents could enforce that their subordinates use a particular
algorithm, for example by refusing to renew A certificates after a certain date.

Note that, in contrast to [RFC6916], it is not necessary to coordinate a specific date

4The parent CA must be prepared to verify a B proof of possession, but can still have only an A
key.

5For example, through their Certification Practice Statement (CPS).
6An exception is needed during [RFC6489] key rollovers.
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when phase 2 starts. At some point — potentially already before phase 1 — some
experimental leaf CAs will be created with algorithm B, whose products are initially
rejected by most RPs. Over time, RPs will start accepting these products, until the
experiments we recommend in 6.2.2 show that almost all RPs accept B. The first
few migrations of production CAs mark the start of phase 2, and after the first few
CAs switch without issues, the rest can follow suit safely. No timeline needs to be
imposed, and the transition can occur naturally by decisions of individual CAs based
on real-world measurements.

There is also no definite end for phase 2. While the share of algorithm B certificates in
the RPKI may grow from a small fraction of experimental certificates to the majority,
A certificates can keep being issued indefinitely. It is conceivable that phase 2 is soon
followed by deprecation of algorithm A, or theoretically a third algorithm could first
be introduced, making phase 2 overlap with the phase 0 of another transition.

6.2.2 Measuring RP readiness

For our mixed-tree transition, it is crucially important that RPs are ready to validate
new algorithm B signatures, before production CAs migrate. We propose several
complementary methods for measuring RP readiness for the new algorithm. Together,
these methods can be used to confidently measure the adoption of new RP software
that accepts algorithm B, and thus inform operators when it is safe to migrate to the
new algorithm. More detail about each of these methods is given in appendix B.

Monitoring RP software from a repository We can count the versions of RP
software that are in use by logging requests to an RRDP repository. This shows
what number of validators run updated versions, but not what those RPs are
used for, and whether they actually verify B products.7

Measuring reachability of B repository We can count how many RPs download
from a repository only pointed to using a B certificate, versus those that reach
another repository. This is a more reliable indicator.8

Measuring use of a new TAL We can measure whether a new Trust Anchor Lo-
cator (potentially with a new algorithm) is being used by individual RPs, by
logging requests that fetch the TA certificate. This is useful both during a
’normal’ algorithm A to A TA key rollover, and an algorithm migration, as
discussed in 6.2.3.2.

Measuring effect on routing Finally, we can measure the actual effect that a
migration would have in real-world routing, by adapting methodologies that
are currently being used to measure ROV adoption in general. Here, we can
also combine looking at (1) route propagation with BGP collectors [29, 31],
(2) testing reachability from inside networks with probes [60, 31, 63], and (3)
testing reachability from real users with advertisement-based measurements [34].
Together, this gives a thorough overview of the real-world impact of a migration.

While each experiment requires significant setup, they share many components. We
recommend performing a combination of these methods. By overlapping their experi-
mental setups, the additional effort for performing more than one of these experiments
is minimal, but the combination of their results provides high confidence in the readi-
ness of RPs. Only when the combined measurements show widespread acceptance of
algorithm B among RPs that are used for filtering, the first large production CAs can
safely transition.

7For example, outdated software might be run by researchers, instead of being used for ROV
filtering, and some validators might be reused for filtering in many networks at once. Also, despite
a recent version of software being reported, an RP might have disabled algorithm B or not been
configured for new B TALs.

8This can also measure adoption by rsync-only RPs, and measure actual acceptance of B instead
of software versions.
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6.2.3 Single CA algorithm roll

During phase 2 — and for experimental purposes also before then — CAs can
unilaterally migrate to a new algorithm. This is possible by simply following the
existing procedure for key rollovers [RFC6489], just with the old key using algorithm
A, and the newly created key using algorithm B.

Technically, key rollover consists of creating a ‘new ca’, reissuing all products of the
‘current ca’ and finally placing the new ca products in the exact same locations
as those of the current ca. The new and current ca represent key pairs: they
are only logically different, not organizationally. In line with [RFC6489], the steps
are:

1. “Generate a new key pair for the new ca.” For the algorithm roll in particular,
the new key pair uses algorithm B.

2. “Generate a certificate request with this key pair, and pass the request to the
CA that issued the current ca certificate.” If the parent CA allows using
algorithm B, this results in the publication of the new ca’s certificate.9 The
new ca has no published products yet, and the current ca is still in use.

3. “Publish the new ca’s CRL and manifest.” The CRL is initially empty, and the
manifest indicates the CRL as the only published object.

4. “The new ca enters a Staging Period.” This is a period of at least 24 hours,
during which the new ca reissues all products of the current ca. Copies
of every issued certificate and signed object are created, with identical content
but a different issuer. For any subordinate CA, a new resource certificate is
made, pointing to the same subordinate publication point, but now signed with
algorithm B.

5. “Upon expiration of the Staging Period, the new ca MUST publish the signed
products that have been reissued under the new ca, replacing the corresponding
products issued under the current ca at the new ca’s repository publication
point.” When this has been done, the current ca becomes old and the new
ca becomes current. Relying parties can validate the algorithm B products.

6. “Generate a certificate revocation request for the old ca certificate and submit
it to the issuer of that certificate.”

An overview of the migration for a single CA is shown in fig. 6.3.

6.2.3.1 Aborting

If there is, despite the measurements recommended in 6.2.2, any concern that some
RPs might not validate B products yet, there is a possibility to quickly abort the
rollover before executing step 6. Consider a scenario where some RPs do not accept
B. This can lead to problems only after step 5, when the old products are replaced
with algorithm B counterparts.

Some time after step 5, operators can notice that RPs fail to validate the algorithm
B equivalents of the withdrawn products. If problems are detected, the old ca can
quickly be reinstated, by reverting step 5. The old ca’s products, that have not been
revoked yet, can be published again, in their original location, without needing to
reissue them, so, just like performing step 5, reverting it can also be done in a matter
of minutes.

Although [RFC6489] recommends that step 5 be executed over the span of not
more than a few minutes, and should be seen as atomic by RPs, it is also possible
to perform step 5 in multiple smaller parts. The CA can replace a subset of the

9The new ca certificate has an algorithm B subject, and can have either an A or B issuer.
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products first, monitor for problems, and only proceed with the rest when no issues
are detected.10

The option to postpone step 6 and revert step 5 — or even do step 5 in multiple stages
— can be particularly useful for the first CAs that transition in phase 2. After several
CAs migrate successfully, the risk diminishes, allowing others to complete step 6 more
confidently.
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Figure 6.3: Key rollover for a single CA, from key pair X to Y. Light icons indicate
the old products and dark icons indicate new products. The dotted arrows indicate
the Authority Information Access (AIA) extensions in each object, pointing to the
issuer’s certificate. During step 4, the parent P has published a new certificate with
subject Y (an algorithm B key pair) pointing to the same publication point as the old
certificate. At step 5, the new objects, prepared (but not published) during step 4, are
published at the exact location of their old counterparts, so the AIA extensions in
Z’s products point to the new certificate for Z, without Z’s involvement. CRLs and
manifests are not shown for simplicity; from step 3 up to and including 5, there are
actually two CRLs and manifests in the single, shared publication point.

6.2.3.2 Root CAs

An important special case of a key rollover is that of a trust anchor. TAs have no parent
CA, so requesting a new certificate is not possible. Instead, the TA operator generates
a new key pair, creates a new self-signed (TA) resource certificate, and publishes a
new [RFC8630] Trust Anchor Locator (TAL) that points to the new certificate. While
TALs have so far only been distributed out-of-band, [RFC9691] introduces an in-band
method to announce a successor for a TA key, in a Trust Anchor Key (TAK) object.
This supports distributing a TAL without RP operators’ involvement, yet it does not
significantly change the process needed for a TA key rollover. The process for a TA
key rollover is visualized in fig. 6.4.

10Place a few of the new B objects in the places of their A counterparts. Then add these to the
new manifest and remove them from the current manifest. Later, replace the rest, add everything
to the new manifest, and empty the current manifest.
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Figure 6.4: Overview of a TA key rollover, from key pair A to B. The dark icons
represent the newly created objects. The TAK object is specific to [RFC9691], and
can be left if every RP manually adds TAL B after receiving it out-of-band.

Using the new certificate, all products issued by the old TA instance need to be reissued
under the new instance. However, unlike for normal CAs, the reissued products cannot
replace their old counterparts, as initially, RPs will not have the new TAL yet. Thus,
the new products are to be published at a separate location.

Note carefully that this means that, until the direct subordinates update the AIA
extensions in their signed products, the subordinates’ products will have an AIA that
only matches the certification path to the old TA.

The profile for resource certificates ([RFC6487]) requires that the AIA extension is
present, but does not explicitly specify how the extension should be validated. The
relevant step of validation is:

The certificate contains all fields that MUST be present, as

defined by this specification, and contains values for

selected fields that are defined as allowable values by this

specification.

As long as the old TA instance is still in use, the old AIA value is indeed an allowable
value. However, when validating top-down from the new CA instance, this requirement
is ambiguous and historically caused confusion [62, 76].

[RFC9691], which defines the TAK object, explicitly states that the outdated AIA
extensions are to be ignored.

Finally, note that the publication locations of CA certificates for

delegations to child CAs under each key pair will be different;

therefore, the Authority Information Access ’id-ad-caIssuers’ values

(Section 4.8.7 of [RFC6487]) on certificates issued by the child CAs

may not be as expected when performing top-down validation, depending

on the TA public key that is used. However, these values are not

critical to top-down validation, so RPs performing such validation

MUST NOT reject a certificate simply because this value is not as

expected.
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Although [RFC9691] is not implemented in common RP software yet, it appears
that current common RP software does not reject a certificate whose AIA points to
an unexpected location.11 Furthermore, even if an unexpected AIA value leads to
rejection of a certificate, RPs that have only the old TAL will observe a correct AIA
value until subordinates update it, and RPs that have both TALs will observe a correct
AIA from one starting point, and an incorrect one from the other, still leading to
successful validation under one of the TALs, so even rejecting on unexpected AIA
values need not be a problem. Still, a TA key rollover has not yet been executed in
practice, so care should be taken when performing one to ensure that the temporarily
inaccurate AIA extensions do not cause problems.

While TA key rollover is by itself not trivial, and unprecedented, it will definitely need
to happen at some point (even if the algorithm does not change). The transition to
a new algorithm in a rollover does not make any difference to the process, so while
TA rollover by itself is challenging, we believe that it does not pose any additional
challenges when combined with a transition to a new algorithm.

6.2.4 Deprecating algorithm A

Once a new algorithm B (or even several new algorithms) has been adopted, an
old algorithm A can be deprecated. There is a spectrum of options that can be
chosen depending on the urgency of deprecation. Note that, in contrast to [RFC6916],
deprecating A is not required to start enjoying the protection from algorithm B.

It is possible to use wording in the initial document that obsoletes [RFC7935] to give
directions to CAs, but also to later publish another document that further deprecates
algorithm A.12

B is equal to A. In the initial replacement of [RFC7935], two algorithms can be
presented without a preference: CAs may choose either one. With this approach,
deprecation of A is not enforced. While B might become ubiquitous by the
choices of CAs, it is still allowed to keep using A forever.

Recommend migrating The initial document can recommend the use of algorithm
B over A when generating new keys, or state that CAs should migrate.

Introduce B as mandatory. The initial document can mandate using algorithm
B as soon as possible. For example, it can state that CAs must not create
new A keys, and should perform a key roll to B keys as soon as their parent
supports it. It can even suggest that parents may refuse to renew certificates for
A subordinates, giving them leverage to enforce adoption.

This spectrum of wording in the first replacement of the algorithms document can
guide adoption of B, but must keep verification of A products mandatory at least
during the transition. For example, “RPs MUST validate both algorithm A and B
signatures”, regardless of whether making new A products is still allowed. An initial
document could already allow removing that support once it is no longer needed in
practice: “RPs MUST validate both algorithm A and B signatures, until A is no
longer used”, but to avoid ambiguity about when ending support for A is acceptable,
it is also possible to postpone this to a next iteration of the algorithms document. In
a later version (that might initiate another algorithm introduction, or only clean up
A) all references to A can be removed, or validation of it can be made optional.

11For FORT validator v1.6.6 see https://github.com/NICMx/FORT-validator/blob/1.6.6/src/

object/certificate.c#L1873-L1882. For Routinator v0.14.2 see https://github.com/NLnetLabs/

rpki-rs/blob/v0.18.5/src/repository/cert.rs#L955-L964. For rpki-client see https://github.

com/openbsd/src/blob/d48ea33/usr.sbin/rpki-client/cert.c#L1048-L1051.
12While we discuss introduction of B and deprecation of A, our proposed procedures also work

with multiple algorithms, such as introducing both B and C, and deprecating only A or even both A
and C.
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6.3 Comparison

Our proposed method differs from [RFC6916] in two fundamental assumptions.

• Introducing and deprecating an algorithm can be separate. Our procedure does
not make the assumption that the RPKI will always allow only one algorithm.

• We require that all RPs be first to update, instead of all CAs.

The former is not a restriction, but offers more flexibility. The latter can be restricting,
though we believe it to be a reasonable requirement. We evaluate the implications
of the two different underlying assumptions in order, and then compare the resulting
characteristics of the two procedures.

6.3.1 Separation of introducing and deprecating

The [RFC6916] procedure fundamentally couples the introduction of algorithm B
with the deprecation of algorithm A. Foregoing this coupling does not impose any
restrictions on the possible migrations: doing a transition from a single algorithm A to
a single B is simply a sequence of first introducing B and later deprecating A.

On the contrary, the coupling in [RFC6916] rejects the possibility that multiple
algorithms might intentionally be allowed. There can be merit in having multiple
mandatory-to-implement algorithms for relying parties.

• In section 4.6.2 we discussed that having a fallback algorithm, based on a
different hardness assumption than the main algorithm, is a good idea. If one
algorithm is broken, RPs are already prepared to accept products signed with
the other algorithm, so that CAs can quickly switch. If this is done, RIRs should
also publish (fallback) TALs for the fallback algorithm, despite not actually
publishing anything with it yet.

• As suggested by Dickson [22], it is — given the long duration of a migration
— conceivable that the proportion of time when only one algorithm is allowed
may be less than the vast majority. While this makes the temporary operational
complexity and performance overhead of [RFC6916]’s parallel trees unattractive,
there is also a further risk: it might be necessary to start an algorithm migration
even before the first one is complete.13 In [RFC6916], the options are then to
wait for the first migration to complete, to abort and restart the first migration,
or to use three parallel trees.

Our proposal handles this gracefully. By separating introduction from depreca-
tion, it is naturally possible to introduce a third algorithm C before deprecation
of A has finished.

Without assuming that only one algorithm should be allowed, using mixed certificates
is natural.14

6.3.2 RPs update first

The most significant difference between our approach and [RFC6916] is that we assume
that RPs update before CAs. This is a consequence of the previous difference. To
avoid the foreseen exponential — or more likely linear in the number of algorithms —
growth15 that led to [RFC6916], we drop compatibility with old validators slightly

13For example, removing hybridization once post-quantum signatures are trusted enough, increasing
the security parameters, or replacing one hybrid with another due to the post-quantum component
being broken.

14With multiple algorithms and no mixed certificates, separate trees would be needed for every
algorithm.

15Each CA creates duplicate objects for each possible combination of algorithms (exponential), or
more sensibly only A-A, B-B (linear), to retain compatibility with old RPs. See 6.1.3.3.

63



earlier.

The requirement that all RPs must support algorithm B before production CAs start
migrating seems stringent, but we believe it is both feasible and preferable given the
current RPKI ecosystem.

Essentially, it seems that updating RPs is easier than updating CAs for multiple
reasons.

Few RP implementations Currently, only three well-known, supported RP soft-
ware implementations are available. From measurements at an RRDP repository
(as in appendix B.2) run by NLnet Labs [39, 40], we see that roughly 4000
relying parties use one of these three implementations. About 100 are using the
discontinued RIPE Validator 316 and OctoRPKI17. So, it is easy to coordinate
rolling out updates to the few implementations, and to wait for them to be
adopted.

Adoption of such new versions will take a long time: discontinued implemen-
tations are still in use, and a significant fraction of RPs is running outdated
versions of the supported implementations [39, 77].

Job Snijders suggests that one reason for this could be that for many operating
systems, only old versions of the software are available in the package manager
[70]. So, improving the availability of new versions in package managers is one
way to help speed up adoption. Given the relatively low number of validators,
efforts to raise awareness among operators, for example through mailing lists of
network operator groups, could also help promote new versions.

These steps would be wise anyway, as some used versions are still vulnerable
to attacks presented in [32] and recently discovered vulnerabilities in rsync [17,
18].

CA updates are harder The CA side of things is more complex, as there are big
differences between CAs in terms of size, whether they have subordinates, use of
HSMs, and so on. Consequently, many CAs have made their own implementa-
tions, of which they are the sole user. This makes migrating CAs organizationally
complex, requiring considerable manpower for changes to proprietary software,
configuration, and possibly investment in new HSMs. In particular in the
[RFC6916] migration, rather complicated software is necessary to keep the two
trees synchronized.

Compared to the minimal cost of accepting a simple update of open-source
validator software, the cost for CAs is much higher. In turn, this makes it likely
that they take a long time to update, especially for [RFC6916] where a top-down
order is required.

In contrast, our technique is both much simpler for CAs, and does not impose
the top-down order. This allows CAs to migrate in their own time, without
having to wait for their parents, and their subordinates having to wait for them.

CAs have no incentive Apart from the technical and organizational complexity for
CAs, they also have no incentive to migrate before RPs do. When an RP starts
offering algorithm B products, this initially offers no security benefit, yet comes
at significant cost. With [RFC6916], the security benefit comes only after the
Twilight Date, when all CAs have switched for a long time, and all RPs must
have started accepting algorithm B products. Thus, there is no incentive for
early adoption by CAs. Dickson calls this a “stick”-only approach, as opposed
to the “carrot” and “stick” when mixed certificates are used.

16https://github.com/RIPE-NCC/rpki-validator-3/
17https://github.com/cloudflare/cfrpki/
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Together, this causes us to believe that a transition where RPs update first is feasible,
and could be faster than one where CAs update first top-down.

6.3.3 Resulting aspects

The two different assumptions lead to a number of differences in the resulting proce-
dures. In most aspects, mixed certificates offer an advantage over parallel trees.

Easier for CA Our proposal should be simpler to implement for CAs. CA software
doesn’t need to handle parallel trees, only a slight variation on the more common
and simple key rollover procedure. We demonstrate this in chapter 7 through
a proof-of-concept in Krill. The required changes are minimal, and algorithm
rollover works with Krill’s existing [RFC6489] support.

No performance cost for parallel trees Similarly, parallel trees have more oper-
ational cost: performance overhead for RPs, as well as increased hosting cost for
repositories. While this cost is not permanent (only during migration), we have
seen that migrations can take a long time.

Risky for first CAs One potential downside of our approach is that there is some
risk to the first non-experimental CAs that migrate, as they will drop their A
products at once.

The gravity of this risk depends on the content that a CA publishes. Often,
only a single CA publishes objects about a particular resource. In that case,
ROV (ASPA works similarly) has a fail-open quality, where unavailability of
ROAs causes legitimate announcements to change from ROV-Valid to ROV-
NotFound, and not ROV-Invalid (see section 2.2.2.2). However, there can be
cases where another CA has algorithm A products for the same prefix, such that
RPs that understand only algorithm A. Then, replacing the A products with
B products can cause legitimate announcements to change from ROV-Valid to
ROV-Invalid from the perspective of outdated validators, potentially making a
prefix unreachable.

The risk when using a mixed-tree strategy, because:

• our extensive monitoring methods in section 6.2.2 can be used to confidently
measure whether RPs will accept algorithm B;

• a CA can inspect the RPKI to see whether any other CAs impose this risk
for its resources;

• as a contingency plan, CAs can abort their migration in minutes, as de-
scribed in 6.2.3.1.

A similar risk applies to the Twilight Date in [RFC6916], where it is also assumed
that all RPs have updated before disabling the A tree. Some of the monitoring
methods in 6.2.2, could similarly be applied to [RFC6916] to monitor whether
the RP Ready Alg. B Date deadline has been met in time. Still, establishing
milestone dates far in advance discourages decision-making based on real-time
insights, as postponing milestones is a lengthy process.

Overall, both procedures have some risk for the first CAs when they remove
their A products, but also offer ways to mitigate this risk.

Laissez-faire The [RFC6916] procedure requires global coordination, and a top-down
order. It is difficult to achieve consensus about particular milestone dates years
ahead of them. To our knowledge, imposing future dates in a BCP RFC is
unprecedented, and it seems unattractive for operators to be bound to such
dates. Instead, our laissez-faire approach allows CAs to determine their own
timelines individually. This can make the actual transition easier and faster, and
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it may avoid hesitation of operators that could slow down the phase leading up
to the transition.

Early experimentation The mixed-tree approach allows for early experimentation
in the real RPKI. A leaf CA can be used that makes B products, and updated
RPs can already validate them. This makes it possible to start the transition long
before actual standardization, as is e.g. also being done with ASPA objects. This
way, operational experience can guide standardization, giving more confidence
in the changes before they are finalized.

Taking such pre-standardization experiments even further, it is even possible
and attractive to update all RPs as soon as possible. RP implementations could
be changed to accept algorithm B right now. This possibility can then be kept
dormant for a long time, without CAs switching yet (except for a few leaf CAs for
monitoring). This involves no operational cost to CAs for maintaining parallel
trees, and gives lots of time for RPs to adopt updated software. Since the RPKI
only needs to provide integrity (no risk of store-now-decrypt-later attacks), this
can be used to prepare for a migration long in advance, with no risk or cost. At
the last minute, when the quantum threat becomes real, the actual migration
of CAs (to a less performant algorithm, and with some risk) can be done very
quickly as RPs were already updated long before.

So, the mixed-tree transition enables a timeline with very early updates to RPs
at no risk or cost, while postponing the more risky and costly migration of CAs
until it is really necessary. In [RFC6916], this is not possible because (1) the
timeline needs to be coordinated far ahead of time, (2) CAs are required to move
first, and (3) there is increased operational cost throughout the transition.

Early protection Finally, there is a difference in when the protection of algorithm
B takes effect. In [RFC6916], the protection applies once relying parties stop
using A products; this is roughly by the Twilight Date.18 At that point, all
CAs have been producing B products for a long time, and RPs also must have
updated some time ago. Until this time, while B products are available and
RPs can use them, the remaining support for A makes the RPKI vulnerable to
a downgrade attack. In short, [RFC6916] offers the new level of protection after
at least two prerequisites have been met:

(a) all CAs provide B products,

(b) all RPs have updated to accept (only) them.

The protection applies at the same time for every resource (prefix, ASN).

On the other hand, the mixed-tree alternative starts providing protection for
each CAs resources individually. The prerequisites for one holder’s resources to
enjoy algorithm B security are:

(a) the particular CA and its ancestors19 have switched to B,

(b) all RPs have been updated to accept B (as well as A products under B
roots).

These requirements are strictly weaker:

• Both approaches require all RPs to update before the protection takes
effect.

18Before the Twilight Date, RPs must use B, but can revert to A products. Afterwards, using A is
not recommended.

19Since each TA has (or could have, through forgery) a root certificate with all resources (the /0

prefixes and all ASNs), it is also necessary that all 5 TALs have been replaced. Alternatively, [75]
could offer a way to limit the scope of RSA trust anchors when some RIRs are still using RSA.
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• In the mixed-tree transition, a CA can achieve the protection for their
resources long before the last CA has switched, as long as its parent has
done the same.

In particular, users of the few hosted CA offerings — the vast majority of resource
holders — can be protected early, while giving delegated CAs as much time as
they want to update.

6.4 Recommendations

We have now evaluated post-quantum candidate algorithms and their performance
impact, as well as possible migration procedures. In this section, we integrate our
findings into a set of actionable recommendations for the RPKI community, categorized
into the following topics:

• The selection of algorithms to introduce and the migration of the RPKI itself,
which have been the main focus of this thesis.

• Replacing the [RFC8183] BPKI trust anchors, which is an important first step
to transition ahead of the rest of the RPKI.

• The need to update various related protocols on which the RPKI relies.

• Standardization of the new algorithms and the migration approach.

The following sections elaborate on these topics.

6.4.1 Migration and set of algorithms

For the migration of RPKI’s main use of signatures, we recommend adopting the
mixed-tree approach for two decisive reasons:

1. We believe the mixed-tree approach to enable a much simpler migration than
[RFC6916]. It is more attractive in particular for CAs, which makes it likely
that the community can start adopting it soon.

2. The mixed tree supports migrating to a state where multiple algorithms are
allowed. This is necessary for the recommendations below, that offer operational
advantages during the migration, and improved security.

With this kind of transition, we then suggest the following.

Introduce two post-quantum options As discussed in section 4.6.2, it would be
wise to introduce not one but two post-quantum algorithms. One should be the
overall winner: Falcon-512 in a hybrid. The other, while not intended to be used
in practice, should be a fallback option that is based on a different hardness
assumption. With the lattice-based Falcon as main replacement, a fallback could
be the multivariate MAYO, or even less performant options may be acceptable
as the fallback is only meant as a contingency plan. The addition of a fallback
algorithm may be postponed, for example waiting for NIST’s standardization of
a non-lattice-based schemes while already introducing Falcon.

Introducing more than two schemes is also possible. Using many different
algorithms is inconvenient for implementers, but adding stronger parameter sets
for future-proofing (e.g. Falcon-1024 with a corresponding traditional component
and longer digests) seems sensible.

Implement our null scheme To mitigate the cost of introducing bigger signatures
and public keys, the null scheme we define in chapter 5 should be implemented.
This can almost make up for the increased sizes of post-quantum algorithms.
Introducing the null scheme at the same time as the post-quantum algorithm(s)
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is convenient, requiring RPs to update only once. Furthermore, acceptance of the
null scheme is somewhat harder to monitor than that of a whole new algorithm,
because it applies only to [RFC6488] objects, not to resource certificates, so
measuring through access to repositories (appendix B.2) is not possible. Thus,
it is safer to introduce the null scheme together with the new algorithm(s) than
introducing it separately.

Update (only) RPs very soon We expect widespread adoption of new RP software
versions to take a very long time. Thus, the earlier new versions with support
for the new algorithms are available, the better.

Despite our null scheme, switching to a new algorithm involves significant cost
for CAs. On the other hand, for RPs, the cost of accepting a new algorithm
is negligible. So, it is practical to first roll out new RP versions and wait for
their adoption. The capability of accepting a new algorithm should then be kept
dormant for a long time. This gives CAs ample time to prepare their migration,
without suffering the performance cost of the new algorithm.

The actual algorithm rollovers of individual CAs (except for some early adopters
for experimentation) can then be postponed until the last minute, when the
quantum threat becomes credible.

Updates to validators can be rolled out as soon as standardization of post-
quantum algorithms is complete. Validators do not depend on availability of
HSMs that can sign with the new algorithms, which can take more time after a
signature algorithm’s specification is finalized.

Additionally, validators can be updated before an update to [RFC7935] is finalized.
For example, rpki-client has been updated with experimental support for
ECDSA (allowing mixed certificates), which is not specified in [RFC7935].

Publish future TALs soon One important detail for the above idea of updating
RPs first and postponing migration of CAs for a long time, is that we do need
RIRs to already create and publish TALs for the new algorithms. This way, they
can already be incorporated in the new RP versions, despite the TALs not being
used for any published products yet.

Perform monitoring experiments Finally, multiple of the experiments from sec-
tion 6.2.2 should be performed to keep track of the adoption of updated validator
software. This, too, can be done ahead of standardization.

These are all relatively simple steps that can be taken in the upcoming years, without
needing global coordination, and without introducing risk or performance impact.
Once the quantum threat becomes real, CAs will be able to quickly switch to the
post-quantum replacement. At that time, RPs will already support the new algorithm
and have updated TALs, such that the switch can be fast. Protection against quantum-
enabled attacks takes effect for individual CAs as soon as they switch, and RP operators
have disabled the old TALs.

6.4.2 Replacing RFC8183 trust anchors

A different but no less important migration is needed for the channels between CAs
and their subordinates, as well as CAs’ repositories, typically authenticated with
a [RFC8183] BPKI. This channel is a particularly attractive target for a quantum
attacker (see section 3.3.1).

Migrating this channel to use post-quantum signatures could theoretically involve only
the two parties that use it. The channel is invisible to RPs and all other CAs. As
such, it can and should be done much sooner than switching the signatures used in
the RPKI itself.
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As we’ve seen in 4.6.3.1, it can be considered to use a different, stronger scheme for it,
because performance is not as important. Replacing them again is (currently) not prac-
tical: it could in principle be done by manually redoing a [RFC8183] exchange.

6.4.2.1 Current implementation

In practice, there is poor support for replacing BPKI trust anchors. [RFC8183] does not
specifically provide for repeating the out-of-band TA setup, although simply repeating
the procedure could be expected to work. A problem is that actual software (that is, at
least Krill) makes the assumption that each CA has a single so-called ID cert, that it
uses for authentication towards all other parties. With this approach, regenerating this
ID cert20 directly breaks the channel with every communication partner. This means
that not only a CA’s channels to parents and repositories need to be re-established
quickly, but this also needs to be done by all the CA’s subordinates.

To support a local BPKI migration, a CA should at least be able to maintain previous
ID certs, for example keeping a mapping from the peer’s ‘handle’ to the key that was
shared with it. Then, two parties can locally update their BPKI TA either by truly
re-running the [RFC8183] procedure, or by some other means to be defined in the
future.

At the IETF 115 meeting, Tim Bruijnzeels already brought up the lack of a way to
replace BPKI TAs [10]. He also drafted an idea for a successor to [RFC8181] (commu-
nication between CA and publication server) that includes a way to update BPKI TAs
between CAs and publication servers without using out-of-band communication [11].
Similarly, another draft ([46]) adds new messages to both [RFC6492] and [RFC8181]
at the same time. Even without changing protocols, software can at least change to
enable manually updating TAs independently per communication partner.

As no practical implementations for BPKI TA rollovers exist yet, we recommend this
as a relatively straightforward action item for implementers and the community to
pick up. The BPKI is an easy target for quantum attackers, but should also be easy
to protect due to its local nature.

While there is no good support for BPKI TA replacement right now — and we strongly
recommend implementing that — preparing CA software to default to post-quantum
algorithms for new relations is already helpful before a good TA replacement procedure
is available. This way, operators of new CAs don’t have to repeat the setup later
on. As soon as a way to update BPKI TAs in place is available, CAs should be
encouraged to quickly upgrade their existing BPKI TAs, because it can make quantum-
enabled attacks much harder, even when both involved CAs are still using traditional
cryptography for their resource certificates.

6.4.3 Other technology

Of course, CAs and repositories also need to adopt post-quantum algorithms for TLS
and DNSSEC to prevent attacks on their hosted RPKI offerings, transport between
repositories and validators, and the out-of-band communication used in [RFC8183].
In particular, while our work is concerned only with signatures (that are not at risk of
store-now-decrypt-later attacks), confidentiality of TLS traffic is important to protect
password-based authentication of RIRs’ web interfaces. This is urgent, as attackers
could capture and store traffic to such interfaces right now, and decrypt it years later
to obtain credentials. Multifactor authentication can also help in this regard.

20There is an API endpoint that triggers this, but was implemented primarily for testing, not
for actual use: https://github.com/NLnetLabs/krill/blob/v0.14.5/src/daemon/ca/manager.rs#

L500-L510.
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6.4.4 Standardization of mixed-tree migration

Finally, both the selection of new algorithms and the migration procedure will need to
be documented somehow.

For the changes to the algorithms that are used, a new version of [RFC7935] will clearly
need to be created. The first steps of our recommended actions can be done ahead of
standardization. First, consensus should be reached among RIR operators and software
maintainers, about the algorithms to be introduced. Then, a new algorithms profile
can be drafted and implemented in validator software. It does not seem necessary to
await the full standardization process before implementation: successful real-world
deployment is excellent evidence to support an internet draft.

Replacing the algorithms profile [RFC7935] is the only required change in standardiza-
tion to perform a mixed-tree migration. The new algorithms profile can simply specify
that both RSA and the new algorithm(s) are allowed; the transition does not require
any further global coordination. However, it seems wise to also document explicitly
that [RFC6916] is no longer the recommended procedure for algorithm migration. To
make this clear, another (BCP) RFC can be created that describes the mixed-tree
migration procedure, obsoleting [RFC6916]. This new algorithm agility procedure
would be much more flexible than [RFC6916], allowing introduction and deprecation of
algorithms independently, and without imposing that a coordinated timeline is laid out
in advance. Hence, standardizing the algorithm agility procedure is not a prerequisite
for performing it. Consequently, the community can decide to either

(a) first document the mixed-tree procedure, replacing [RFC6916], before starting the
first migration by updating the algorithms profile, or

(b) perform the migration first by updating the algorithms profile, and later (when a
migration has successfully been performed) document the mixed-tree procedure
that is then already proven effective.

The latter option seems more attractive, allowing the migration to post-quantum
schemes to start early, and documenting only a procedure that is already known to
work. This aligns with the SIDR and SIDROPS working groups’ tradition of requiring
implementation experience before finalizing a standard. It also avoids the risk of
standardizing a procedure that is — like [RFC6916] — later deemed inadequate.

Overall, we suggest to first reach consensus on introducing new algorithms through
a mixed-tree approach, and to document this in a new algorithms profile to replace
[RFC7935]. Documenting the mixed-tree approach for repeated use in the (far) future
can wait until the first migration is proven successful, but if the community disagrees,
the opposite order is also possible.
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Chapter 7

Implementation

To demonstrate the feasibility of our proposed mixed-tree migration approach, we
implement a proof of concept (PoC) in commonly used RPKI software: Routinator and
Krill. We also publish the source code, as a starting point for further experimentation,
such as performance measurements and interoperability testing.

Our implementation serves as evidence that (1) acceptance of post-quantum signatures
in a mixed-tree setting can easily be integrated into existing RPKI software, and (2)
the mixed-tree migration approach as outlined in chapter 6 works in practice.

7.1 Design

We have implemented a post-quantum signature scheme for the mixed-tree approach
in Routinator and Krill. These two software packages are widely used in the RPKI
ecosystem, and rely on a shared underlying Rust crate rpki, which is responsible for
the core functionality of the RPKI.

Choosing the combination of Routinator and Krill is not only a natural choice because
of their popularity, but also allowed us to leverage the shared crate to avoid duplication:
in the end, no changes at all were needed in Routinator, only in Krill and the shared
crate.

7.1.1 No hybrid yet

While we propose in chapter 4 to use a hybrid signature scheme with Falcon-512, our
implementation uses Falcon-512 directly. The reasoning for this is twofold.

First, details of the hybridization of post-quantum signatures are still under discussion
in the IETF. Precise formats of signatures and public keys are not quite finalized
yet.

Second, we chose to use liboqs-rs for our implementation of post-quantum signature
schemes, as it provides a straightforward Rust interface to the liboqs C library.
liboqs-rs does not support hybrid signatures. An alternative would be to use
oqsprovider, an extension to OpenSSL, that supports a selection of hybrid signatures.
However, it is more difficult to package and use in Rust.

For a real implementation, we recommend using hybrid signatures through OpenSSL
once native support becomes available, or alternatively, using oqsprovider in the
interim. This remains as future work, as it wasn’t essential for demonstrating the
viability of the mixed-tree approach.

7.1.2 Changes

The main steps to support validation of mixed certificates with Falcon-512 were:

• Adding variants to the PublicKeyFormat and SigningAlgorithm enums in the
rpki crate to support Falcon-512.
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• Changing the RpkiSignatureAlgorithm struct (representing the RSA signature
algorithm) to an enum that also has a variant for Falcon-512.

• Adding implementations of (de)serialization and verification of Falcon-512 signa-
tures and public keys.

These changes were straightforward, as the rpki crate was designed to already neatly
represent signatures and public keys of various algorithms. With these minimal changes
in place, Routinator could be built without any further modifications, and it was able
to validate certificates signed with Falcon-512.

Slightly more involved was the implementation of creating Falcon-512 products. The
rpki crate includes a Signer trait that handles creating signatures. There are several
implementations of it, to support hardware security modules and software signing
with OpenSSL. To make use of liboqs-rs, we opted to create a separate OQSSigner
implementation of the Signer trait, particularly for creating post-quantum signatures.
Krill uses a configuration file where multiple signer instances can be defined, with one
being preferred for new key pairs, but alternatives being available to allow using old
key pairs they contain. As we introduce a new signer type for post-quantum signatures,
this configuration can be used to switch between the old and new algorithm, while
still keeping the RSA keys available.

With our new OQSSigner, different configurations can be used throughout a migration
to set the supported and preferred algorithms. First, our updated Krill can run with
a configuration that only uses OpenSSL, to maintain current RSA signing.

default_signer = "OpenSSL signer"

one_off_signer = "OpenSSL signer"

[[signers]]

type = "OpenSSL"

name = "OpenSSL signer"

A second signer can be added to prefer post-quantum signatures, while still allowing
use of existing OpenSSL keys. This does not trigger a rollover yet, but means that
newly generated keys will be post-quantum.

default_signer = "OQS signer"

one_off_signer = "OQS signer"

[[signers]]

type = "OpenSSL"

name = "OpenSSL signer"

[[signers]]

type = "OQS"

name = "OQS signer"

If in this state a new CA is created in the Krill instance, it will use a post-quantum
key. Any new ROAs will use a post-quantum one-time-use key in the ROA’s EE
certificate. An actual rollover as described in section 6.2.3 can easily be triggered
with the krillc rollover CLI. Even switching back, while keeping keys available,
is possible by changing the default signer and one off signer configurations, and
doing a rollover again.

The source code of our modified Routinator and Krill is available at https://github.
com/SIDN/pqc-routinator/ and https://github.com/SIDN/pqc-krill/, and on
request from the author and Radboud University.
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7.2 Evaluation

Using our modified versions of Routinator and Krill, we demonstrate that the migration
we proposed in chapter 6 works in practice, and is convenient. We have created a
set of testing scripts that automate the process of setting up an RPKI testbed,
including a trust anchor and several CAs in Krill, and Routinator to validate the CAs’
products. Both the scripts and their output are available at https://github.com/
SIDN/pqc-rpki/, as well as on request from the author and Radboud University.

Krill instance 2

Krill instance 1

TA (Falcon)

online (Falcon)

child (Falcon)

grandchild (Falcon)

Steady state

(a) RPKI tree during the
steady state test, with all
CAs using Falcon-512.

Krill instance 2

Krill instance 1

TA (RSA)

online (RSA)

child (RSA)

grandchild (RSA)

Krill instance 2

Krill instance 1

TA (RSA)

online (RSA)

child (Falcon)

grandchild (RSA)

Before 'child' rollover After 'child' rollover

(b) RPKI tree during the single CA rollover test. Ini-
tially, each CA has an RSA key pair. The child CA then
performs a key rollover to a Falcon-512 key pair, while
the others remain unchanged.

Figure 7.1: RPKI trees used in our tests.

7.2.1 Steady state

The first step to demonstrate that our implementation works is to comprehensively
test a steady state where the RPKI fully uses post-quantum signatures. We do this
by creating a complete RPKI environment consisting of:

• A trust anchor

• An online CA under the TA with its own publication point

• A child and grandchild CA, sharing another publisher

The trust anchor and online CA run in one Krill instance, and the child and grandchild
run in another, so that the communication between Krill processes is also tested. Both
Krill instances are configured with only our OQSSigner. As the environment is created
from scratch with post-quantum algorithms, the [RFC8183] BPKI trust anchors are
also created with Falcon. The structure used in this test is shown in fig. 7.1a.

Each CA gets some internet resources and publishes some ROAs. We then use
Routinator, configured with the trust anchor’s TAL, to check that the implementation
creates and validates post-quantum products as expected. Indeed, Routinator is able
to validate the ROAs, and by inspecting the publication points the precise format and
sizes of objects can be inspected.
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7.2.2 Single CA rollover

Next, we want to see an actual migration from RSA to post-quantum signatures. For
this, we create a similar environment as in the steady state test, but now initially
using RSA signatures only. Then, we perform a single CA algorithm rollover at the
child CA, as described in section 6.2.3, using the krillc rollover commands that
normally trigger a [RFC6489] rollover. Figure 7.1b shows the RPKI tree before and
after the rollover in this test.

While this test migrates only one CA, it demonstrates every combination of mixed
certificates. Initially, there is an all-RSA tree, but after migrating, we have:

• The online CA using RSA under an RSA trust anchor.

• The child CA using Falcon, under an RSA issuer (an A issuer signs a B subordi-
nate).

• The grandchild CA still using RSA, under a Falcon issuer (a B issuer signs an A
subordinate).

Each CA publishes objects, and we take snapshots of both the publication points and
Routinator’s validation result at every step. This way, we can see that, as expected,
the grandchild products remain unchanged and valid throughout the process: the
migration is indeed a strictly local operation for the child and online CAs.

This test confirms that the single CA rollover in our mixed-tree migration is convenient
for CA operators. They can simply update configuration (or the defaults could be
changed by the software maintainers over time), after which the rollover can be
performed with the already existing key rollover commands. Once RPs support the
new algorithm, CA operators can simply try to do a rollover whenever it suits them,
without needing to worry about global coordination or creating a synchronized parallel
tree for [RFC6916].

Do note that in this test, the [RFC8183] BPKI trust anchors for communication
between the online and child CAs are not updated to Falcon. In section 6.4.2 we
found that current software poorly supports replacing BPKI trust anchors in place.
This is an important topic for future work. On the other hand, our steady state test
does establish post-quantum BPKI TAs from the start: the difficulty is in replacing
existing TAs without breaking communication channels. Establishing these channels
from scratch is easy.

7.2.3 Conclusions

Our proof-of-concept demonstrates that integrating post-quantum signatures into the
RPKI ecosystem via mixed certificates is not only feasible but requires minimal changes
to existing software. The modifications to support Falcon-512 in the shared rpki

crate were straightforward, with no changes needed in Routinator itself. Unilateral
algorithm rollovers by individual CAs demonstrably work, with existing [RFC6489]
key rollover commands. This supports our assertion that the mixed-tree migration
approach is practical.

While our proof of concept implements Falcon-512 directly rather than in a hybrid
scheme, it establishes that the underlying approach — regardless of the choice for a
specific algorithm — is sound. The extension to hybrid signatures and other validator
implementations would be a natural next step towards real-world deployment, along
with addressing the challenge of updating BPKI trust anchors in place, and employing
our null scheme from chapter 5 in one-time-use certificates.
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Chapter 8

Discussion and conclusions

This thesis lays the groundwork for the transition to post-quantum cryptography in
the RPKI. We have explored the implications of quantum computing for the RPKI,
evaluated which post-quantum cryptographic solutions are suitable, and explored a
practical migration strategy.

As this is the first work on PQC for the RPKI, many areas have not been fully
explored. Instead, we deliberately cover a wide range of relevant topics, yielding
many suggestions for future work, rather than exploring a narrow aspect in detail.
This enables a comprehensive understanding of the steps needed to make the RPKI
quantum-safe.

In this chapter, we review our findings from the previous chapters and the recom-
mendations we make based on them. We outline the limitations of our work, that
directly lead to many avenues for future research. This discussion is organized into
four main sections: first reviewing our evaluation of the quantum threat (8.1), then the
selection of post-quantum algorithms, including our null scheme (8.2), the approach
to performing a migration (8.3), and the implementation we made (8.4). We discuss
the further research, standardization, and implementation efforts that stem from each
topic in their own sections. Finally, we summarize our contributions in 8.5.

8.1 Evaluating the quantum threat

As established in chapter 3, the advent of quantum computing poses a severe threat to
the RPKI. Our analysis shows how an attacker with quantum capabilities can not only
undermine the protections offered by the RPKI, but actually exploit reliance on the
RPKI beyond simply bypassing it. In the presence of a quantum attacker, the RPKI
enables novel attacks on BGP that are not possible without the RPKI. An attacker
could use these to disrupt routing on a global scale, or perform effective targeted
attacks. Consequently, a quantum-vulnerable RPKI is unacceptable as soon as the
quantum threat becomes credible.

Finding 1 Using the RPKI with broken cryptography is more dangerous than using
BGP with no RPKI at all.

This first finding may come as a surprise. Intuitively, and for many other applications,
the use of weak cryptography would be preferable over no cryptography at all. For
example, for internet browsing, privacy is better preserved using TLS with quantum-
vulnerable encryption, than using no encryption at all. For the RPKI, however, this is
not the case. This highlights the importance of preparing the RPKI before it becomes
vulnerable, rather than viewing the transition as an optional ‘upgrade’ that can be
postponed.

While the finding sounds concerning, its impact is limited in practice. If a quantum
attack on the RPKI were to become feasible or is demonstrated, operators would simply
disable the RPKI, falling back to plain BGP to avoid more severe consequences.
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Finding 2 Communication between CAs is an attractive target for a quantum-enabled
attacker.

Our analysis in section 3.3.1 reveals that the communication channel between parent
and child CAs is likely the most attractive target for a quantum-enabled attacker.
This communication currently relies on the same RSA-based cryptography as the
RPKI certificates themselves. It presents an attractive target, as only a single forgery
is needed to compromise a CA’s internet resources. Other avenues require the attacker
to not only create forgeries, but also to inject them into the RPKI somehow. We’ve
shown the latter to be realistically feasible, but it takes more effort and could be less
effective than compromising the parent-child channel.

This is a useful insight: the [RFC6492] channel is a component whose migration can
be prioritized. Not only is it an easy attack vector, but as shown in section 6.4.2, it
also turns out to be a relatively easy component to migrate, being invisible to relying
parties. So, its migration can and should be prioritized: while a single update to the
specification of algorithms to be used can cover changes to both [RFC8183] and the
RPKI itself, deployment of the new algorithm should start with [RFC8183] TAs.

Finally, we identified that there is a reliance on several other underlying technologies,
such as TLS and DNSSEC, that secure (1) web interfaces of hosted CA services and for
performing [RFC8183] setup, (2) RRDP and rsync downloads by RPs, and (3) some
transport layers that can be chosen for the transfer of validated data from validators
to BGP routers.

8.1.1 Future work

Further research is needed on two of these topics. Both are essential to make the RPKI
quantum-safe: there is no point in securing the RPKI itself when related protocols
form an Achilles heel.

• It turned out (in section 6.4.2) that, while it is theoretically possible to manually
update BPKI TAs (e.g. after redoing a [RFC8183] exchange), this is poorly
supported in practice. To address this, in-band support for updating a BPKI
TA should be developed. [11, 10] and [46] are a good starting point for this.

• Some underlying protocols, such as TLS and the web PKI need to become
quantum-resistant. There is already ongoing work on this, but, protection of
confidentiality is (understandably) prioritized over authentication. The RPKI,
however, relies mostly on authentication and integrity.

Future research should inventorize precisely which underlying protocols are
used in the RPKI, and what security properties they need to provide. Then,
implementers can ensure that the necessary measures are taken to use the
protocols in a quantum-safe manner. The transport layers in the RTR protocol
(section 3.3.5) are an example where several underlying protocols can be chosen.
Future work could identify any choices that are quantum-safe by definition or
can be used in a quantum-safe manner; operators and implementers can then
choose a safe option.

8.2 Algorithm selection

Chapter 4 provides an evaluation of which post-quantum signature algorithms to use
in the RPKI. In 4.2, we develop a methodology to estimate the performance impact of
a particular post-quantum candidate on the downloading and verification performance
of an RPKI validator.

Using this methodology, various candidates can systematically be compared with each
other, and with the current RSA-based RPKI. An important limitation is that the
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estimated durations should only be interpreted as relative numbers, useful for mutual
comparison — not as absolute numbers. They are based on:

• (rough) estimates of the duration of a full download over RRDP,

• full adoption of a single post-quantum scheme, and

• no changes to the content of the RPKI.

As such, the numbers are not representative of costs one might expect in the real
world, where partial downloads are commonplace, and where large regional differences
exist between RPs, and between repositories with and without CDNs [65].

The performance benchmarks of post-quantum signature implementations are not
precise either, and are subject to change as implementations mature and become
optimized.

Despite these limitations, the relative performance differences identified in our study
provide a sound basis for algorithm selection. Using our methodology, we find
that:

Finding 3 A hybrid with Falcon appears to be a good replacement for RSA in the
RPKI.

There are several alternatives (MAYO, HAWK, or even ML-DSA) that could also be
considered. We found no compelling reason to prefer any specific traditional component
for use in a hybrid. The trade-off between size and verification speed for EdDSA (or
ECDSA) has no clear winner due to the expected differences in bandwidth of RPs,
and possibilities to optimize validation through caching.

Next, we found several reasons to introduce not one, but multiple post-quantum
signature algorithms in the RPKI:

Finding 4 Other signature schemes can additionally be introduced as fallback and for
specialized use cases.

First, introducing a fallback algorithm based on a different hardness assumption than
the main algorithm provides a valuable safety net. With the lattice-based Falcon
as primary candidate, a fallback could, for instance, be the multivariate MAYO. If
lattice-based cryptography is unexpectedly broken, relying parties would already be
prepared to accept products signed with the fallback algorithm, enabling certificate
authorities to quickly switch to the fallback.

Second, we identified specialized use cases within the RPKI where different algorithms
could be beneficial. For hard-to-update components such as Trust Anchor Locators
and BPKI trust anchors, that are not performance-critical, a strong algorithm like
Falcon-1024 or even SLH-DSA could be justified.

Both of these ideas do have the downside of increasing complexity, requiring more
algorithms to be implemented in software, and to be available in the HSMs used by
CAs. Additionally, standardization of Falcon-512 should be coming relatively soon,
while alternatives based on different hardness assumptions are in a much earlier stage.
This means that introducing a fallback algorithm could delay the transition to PQC.
The community will need to weigh the benefits and drawbacks of these options.

Chapter 5 introduced another instance of a specialized algorithm:

Finding 5 Our ‘null scheme’ can compensate for much of the performance cost of
post-quantum signatures.
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The null scheme is a novel approach that addresses the overhead introduced by the
current use of one-time-use EE certificates in RPKI signed objects. We propose to
leverage the unique requirements of these certificates to eliminate their overhead. Not
only is the private key used only once, but the message to be signed can also be
known before creating the key pair. These requirements are even weaker than those for
normal one-time signatures (like [41]), allowing us to replace the one-time public key
and signature with a single message digest. This maintains the exact same security
as the current approach, while dramatically reducing both size and computational
overhead. The null scheme can be introduced as if it were a normal signature algorithm
(using an algorithm rollover) without requiring any changes to the structure of signed
objects.

The practical benefits are substantial: the performance savings are already useful
in the RSA-based RPKI, but as signature sizes and verification times increase with
a migration to post-quantum signatures, the null scheme’s benefits become greater.
When the introduction of post-quantum signatures is combined with the null scheme,
the performance impact of post-quantum signatures can be nearly eliminated by the
reduction from the null scheme. The precise savings depend on the signature algorithm
that is used.

The null scheme is beneficial by itself, but we highly recommend adopting the null
scheme simultaneously with the introduction of post-quantum algorithms. This
minimizes the performance impact of post-quantum signatures, and allows the two
algorithm introductions to be rolled out together, rather than performing two separate
algorithm rollovers in quick succession.

8.2.1 Future work

Several areas for future research could address the limitations of our current method-
ology of measuring and predicting the performance impact of signature schemes in the
RPKI. These include:

• Predicting the performance impact on rsync transfers and RRDP delta up-
dates (rather than full RRDP downloads), which constitute most of the routine
downloads in practice.

• Establishing a more accurate method for predicting the downloading bandwidth,
taking into account differences between repositories and the locations of RPs.

For instance, our measurements from section 4.2.1.3 could be repeated from
multiple vantage points, and could possibly be combined with statistics on RPs
to get an idea on the distribution of RPs’ bandwidths.

• Benchmarking the signature verification performance impact more precisely, for
instance by measuring validation time using a prototype implementation on a
fake post-quantum RPKI snapshot that is structurally equivalent to a snapshot
of the real RPKI.

Our implementations in Routinator and Krill could be used for this, but doing
the same with different relying party implementations is also valuable.

• Measuring the number of files and bytes that can be saved by performing (more)
ROA aggregation, as discussed in section 4.4.1.1. This could help offset the
increased overhead per object from post-quantum signatures.

• Exploring the implications of adopting a post-quantum scheme with a high NIST
target level (5), such as needing to use larger hash sizes in some places.

These topics can help estimate more accurately what performance impact a migration
to post-quantum signatures will have, and guide the final choice of algorithm, including
a traditional component for hybrid signatures.
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Additionally, further research could be done to inform the decision on introducing
additional signature schemes for the BPKI, TALs, or as fallback. This can include
investigating the performance impact in these specific use cases and looking out
for developments in the standardization process of additional post-quantum signa-
tures.

8.3 Migration strategy

In chapter 6, we analyzed the transition process to post-quantum cryptography in the
RPKI. We showed that the standardized algorithm agility procedure in [RFC6916] is
operationally impractical due to its requirement for global coordination, maintenance
of parallel RPKI trees, and top-down migration order. Instead, we proposed a mixed-
tree migration approach, closely based on Dickson’s original proposal [19, 20], that
allows for a more flexible and practical transition.

Finding 6 The migration strategy from [RFC6916] is impractical; a ‘mixed-tree’
migration should be used instead.

Our mixed-tree approach fundamentally differs from [RFC6916]. It allows the in-
troduction of multiple signature algorithms that can be used interchangeably, and
does not impose a globally coordinated timeline. A very important requirement for
this migration is that relying parties must be updated to support the new algorithms
before CAs start migrating: in contrast to [RFC6916], the mixed-tree strategy does
not maintain an RPKI tree with the old algorithm for backward compatibility.

Individual CAs can migrate when they want, using the familiar [RFC6489] key rollover
procedure. We have proven in section 7.2.2 that this works in practice. Summarized
very briefly (more detail is in section 6.4), we suggest that the following steps should
be taken.

1. Publish future TALs: RIRs should create and publish TALs for new post-
quantum trust anchors early, allowing them to be included in RP software
updates, long before they are used in practice.

2. Update RP software: Roll out validator software supporting post-quantum
algorithms (and the null scheme from chapter 5) as soon as possible, also long
before CAs start migrating. This gives plenty of time for RPs to update.

3. Migrate BPKI trust anchors: As soon as possible, migrate [RFC8183] trust
anchors. These TAs for [RFC6492] and [RFC8181] communication do not need
RPs to be updated first.

4. Set up monitoring experiments: Use the measurement techniques in sec-
tion 6.2.2 and appendix B to track RP readiness for the new algorithms.

Work on these steps can start as soon as, and partially even before, the necessary
changes to the RPKI specifications are finalized. When these steps have been performed,
it is time to wait for RPs to update. Only after a long time, when enough RPs are
ready and/or the quantum threat becomes credible, can CAs start actually migrating.
The essence of the strategy is this:

Finding 7 Updated RP software and TALs should be rolled out as soon as possible;
actually migrating CAs’ certificates can wait.

Thus, it is sensible to initiate discussion in the SIDROPS working group very soon.
The earlier plans are made and implemented, the longer time there is for RPs to
update, which makes the migration less risky.
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8.3.1 Future work

The most important next step towards being able to actually perform a migration is
to reach consensus on it. This requires discussion in the community, which can be
initiated constructively by writing down an initial draft that describes a mixed-tree
migration (perhaps with a selection of algorithms to introduce, including our null
scheme) in detail. This forms a clear starting point for discussion, that can be iterated
on until a consensus is reached.

For the smaller step of enabling BPKI TA replacement, this approach of writing a draft
to initiate discussion was already employed by Tim Bruijnzeels [10, 11]. Resuming the
conversation on that topic is another good next step.

8.4 Implementation and testing

In chapter 7, we demonstrated the feasibility of our mixed-tree migration approach
through a proof-of-concept implementation in Routinator and Krill. Our implementa-
tion successfully showed that post-quantum signatures can be integrated into existing
RPKI software with minimal changes, and that individual CAs can perform algorithm
rollovers using the proven [RFC6489] key rollover procedure.

Our implementation was limited in scope, serving primarily to validate the core
migration concept. While this may not seem like only a small contribution, showing
working code is considered to be an important prerequisite for the adoption of new
ideas in the RPKI community.

8.4.1 Future work

Our implementation also provides a starting point for further development and experi-
mentation.

Hybrid signatures Our proof-of-concept used Falcon-512 directly rather than the
hybrid schemes we recommend in chapter 4. Hybrid signatures should be
implemented, either through oqsprovider or natively through OpenSSL once
available. Using hybrid signatures is unlikely to behave much differently from
using a single post-quantum signature algorithm, but clearly, an implementation
should be made that uses whichever (hybrid) algorithm will actually be chosen.

Null scheme The null scheme proposed in chapter 5 should be implemented and
tested, to verify the theoretical performance benefit we predicted. In Krill
and Routinator, this should be a straightforward change, but it did not fit our
timeline.

Aborting key rollovers Similarly, the possibility for aborting an [RFC6489] key
rollover, as discussed in section 6.2.3.1, can be implemented and tried out.

Interoperability Perhaps the most important reason to experiment with post-
quantum signatures, the null scheme, and the migration process, is to ensure
interoperability between different implementations. Our implementation was in
a validator and a CA, that share most of their code in rpki-rs.

To do actual interoperability testing, at least one additional implementation is
needed, for example in rpki-client and ideally also in other CA software.

Performance benchmarking Using our implementation, as well as any others in
other software, performance testing should be conducted.

This includes both performing measurements of signature verification cost, as
already suggested in section 8.2.1, and verifying the benefits of the null scheme.
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BPKI migration mechanisms As stated in section 6.4.2, current software poorly
supports updating BPKI trust anchors in place. While future work should also
introduce an in-band mechanism for updating BPKI TAs, there is also already
the possibility to improve support for out-of-band, manual updates. Software
like Krill should be able to maintain multiple ID certificates for itself, such that
it can use a new one towards recipients that are aware of it, while keeping the
old one for recipients that are have not yet replaced the TA. This can at least
enable gradual manual key rollovers, instead of requiring all subordinates of
a CA to update their known trust anchors at the same time. Additionally, it
should be possible to configure that post-quantum algorithms should be used
for the BPKI, while keeping RSA for the RPKI itself.

Real-world experiments Finally, it would be interesting to (already) set up an
experimental CA implementation in the real RPKI, as a leaf CA. This can enable
interoperability testing with validators and other CAs, and at the same time be
used as part of the monitoring experiments from section 6.2.2 and appendix B.

Some of these steps can serve as excellent evidence in support of drafts that precisely
specify both algorithm selection and migration strategy.

8.5 Conclusions

This thesis presents the first work on post-quantum cryptography for the RPKI,
establishing the foundation for making this critical internet infrastructure quantum-
safe. Our research provides a broad view of the challenges and solutions needed to
protect the RPKI against the emerging quantum threat.

We have demonstrated that the RPKI enables severe attacks in the presence of
quantum attackers, that make the RPKI dangerous to use when it is realistically
vulnerable. Upgrading the RPKI to use post-quantum cryptography — before these
attacks become feasible — is therefore essential to ensure routing security in the
future.

Next, we have presented a methodology for comparing the performance impact that
can be expected from different post-quantum signature schemes in the RPKI. Using
this methodology, a hybrid approach with Falcon-512 and a traditional component
emerges as a good candidate to replace RSA in the RPKI. Other candidates are also
viable, and in general, the performance impact of post-quantum signatures appears
manageable.

In particular, performance impact of post-quantum signatures can be limited by
introducing optimizations such as (1) increased aggregation of ROAs, (2) caching the
result of signature verifications, and (3) adopting our null scheme in RPKI signed
objects.

The null scheme represents a novel construction that can significantly offset the
performance overhead of post-quantum signatures by eliminating the cryptographic
redundancy in one-time-use EE certificates, without affecting security at all. This
scheme is a valuable contribution independently, but is particularly useful when
combined with the migration to post-quantum signatures, sharing a single migration
process, and offering performance benefits that become even more pronounced with
larger post-quantum signatures.

We have also explored potential benefits of introducing multiple post-quantum algo-
rithms rather than a single replacement for RSA. This includes the null scheme, but
possibly also a post-quantum fallback algorithm to provide resilience against crypto-
graphic breakthroughs, and using stronger algorithms for specialized components like
the BPKI and TALs that are hard to update but not performance-critical. While these
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ideas would increase implementation complexity, they can offer valuable flexibility and
security benefits.

Finally, we have shown that the migration strategy from [RFC6916] is operationally
impractical, and proposed instead a mixed-tree migration approach that allows for
flexible, individual CA transitions using the proven key rollover procedure. In the
proposed strategy, RP updates and TALs are distributed as soon as possible, while
actual CA migrations can be delayed without problem.

Our proof-of-concept implementation demonstrates the feasibility of this approach. We
publish this implementation to provide a starting point for further research, including
performance measurements and interoperability testing.

The findings and recommendations presented in this thesis provide the RPKI commu-
nity with the necessary groundwork to begin planning and implementing a transition
to post-quantum cryptography. This process can start with the creation of early drafts
that describe a possible selection of post-quantum algorithms and the migration steps
to get there, which can then be discussed by the community.
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[24] Léo Ducas et al. “CRYSTALS-Dilithium: A Lattice-Based Digital Signa-
ture Scheme”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2018.1 (Feb. 2018), pp. 238–268. doi: 10.13154/
tches.v2018.i1.238-268. url: https://tches.iacr.org/index.
php/TCHES/article/view/839.

[25] Romain Fontugne et al. “RPKI Time-of-Flight: Tracking Delays in the
Management, Control, and Data Planes”. In: Passive and Active Measure-
ment. Ed. by Anna Brunstrom, Marcel Flores, and Marco Fiore. Cham:
Springer Nature Switzerland, 2023, pp. 429–457. isbn: 978-3-031-28486-1.

[26] Pierre-Alain Fouque et al. Falcon: Fast-Fourier lattice-based compact
signatures over NTRU. Specification v1.2. Oct. 2020.

[27] Andrew Fregly et al. Stateless Hash-Based Signatures in Merkle Tree
Ladder Mode (SLH-DSA-MTL) for DNSSEC. Internet-Draft draft-fregly-
dnsop-slh-dsa-mtl-dnssec-04. Work in Progress. Internet Engineering Task
Force, Apr. 2025. 36 pp. url: https://datatracker.ietf.org/doc/
draft-fregly-dnsop-slh-dsa-mtl-dnssec/04/.

[28] Roque Gagliano, Stephen Kent, and Sean Turner. Algorithm Agility Pro-
cedure for the Resource Public Key Infrastructure (RPKI). Internet-Draft
draft-ietf-sidr-algorithm-agility-03. Work in Progress. Internet Engineer-
ing Task Force, Aug. 2011. url: https://datatracker.ietf.org/doc/
draft-ietf-sidr-algorithm-agility/04/.

[29] Yossi Gilad et al. Are We There Yet? On RPKI’s Deployment and
Security. Cryptology ePrint Archive, Paper 2016/1010. 2016. url: https:
//eprint.iacr.org/2016/1010.

84

https://doi.org/10.1145/3355369.3355596
https://doi.org/10.1145/3355369.3355596
https://doi.org/10.1145/3355369.3355596
https://isbgpsafeyet.com/
https://datatracker.ietf.org/doc/draft-ietf-tls-mlkem/00/
https://datatracker.ietf.org/doc/draft-ietf-tls-mlkem/00/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-12087
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-12087
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-12088
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-12088
https://mailarchive.ietf.org/arch/msg/sidr/pglp5kVhih_Pf8wCmbDYolYIW44/
https://mailarchive.ietf.org/arch/msg/sidr/pglp5kVhih_Pf8wCmbDYolYIW44/
https://mailarchive.ietf.org/arch/msg/sidr/AYN-U2X6_n36mtLfsDsROcADP2M/
https://mailarchive.ietf.org/arch/msg/sidr/AYN-U2X6_n36mtLfsDsROcADP2M/
https://mailarchive.ietf.org/arch/msg/sidr/SyUIqpJ3BrOM8znvnJWQSkxzHz8/
https://mailarchive.ietf.org/arch/msg/sidr/SyUIqpJ3BrOM8znvnJWQSkxzHz8/
https://mailarchive.ietf.org/arch/msg/sidr/Is7oElFs4qeiuVUok_JPy3UI8fM/
https://mailarchive.ietf.org/arch/msg/sidr/Is7oElFs4qeiuVUok_JPy3UI8fM/
https://labs.ripe.net/author/david_murray/bgp-route-origin-validation/
https://labs.ripe.net/author/david_murray/bgp-route-origin-validation/
https://conference.apnic.net/30/pdf/bgp-route-validation-lightning.pdf
https://conference.apnic.net/30/pdf/bgp-route-validation-lightning.pdf
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://datatracker.ietf.org/doc/draft-fregly-dnsop-slh-dsa-mtl-dnssec/04/
https://datatracker.ietf.org/doc/draft-fregly-dnsop-slh-dsa-mtl-dnssec/04/
https://datatracker.ietf.org/doc/draft-ietf-sidr-algorithm-agility/04/
https://datatracker.ietf.org/doc/draft-ietf-sidr-algorithm-agility/04/
https://eprint.iacr.org/2016/1010
https://eprint.iacr.org/2016/1010


[30] Tomas Hlavacek et al. “Behind the Scenes of RPKI”. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’22. Los Angeles, CA, USA: Association for Computing
Machinery, 2022, pp. 1413–1426. isbn: 9781450394505. doi: 10.1145/
3548606.3560645. url: https://doi.org/10.1145/3548606.3560645.

[31] Tomas Hlavacek et al. “Practical Experience: Methodologies for Measuring
Route Origin Validation”. In: 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). June 2018,
pp. 634–641. doi: 10.1109/DSN.2018.00070.

[32] Koen van Hove, Jeroen van der Ham-de Vos, and Roland van Rijswijk-Deij.
“rpkiller: Threat Analysis of the BGP Resource Public Key Infrastructure”.
In: Digital Threats 4.4 (Oct. 2023). doi: 10.1145/3617182. url: https:
//doi.org/10.1145/3617182.

[33] Geoff Huston. How we measure: DNSSEC validation. APNIC Blog. Oct.
2023. url: https://blog.apnic.net/2023/10/31/how-we-measure-
dnssec-validation/.

[34] Geoff Huston. How we measure: RPKI ROA signing and Route Origi-
nation Validation. APNIC Blog. Nov. 2023. url: https://blog.apnic.
net/2023/11/09/how-we-measure-rpki-roa-signing-and-route-

origination-validation/.
[35] Steve Kent. “Algorithm Agility Procedure for RPKI: WGLC Issues

& Fixes”. In: IETF 82. Taipei, Taiwan, Nov. 2011. url: https://
datatracker.ietf.org/meeting/82/materials/slides-82-sidr-5.

[36] Steve Kent, Roque Gagliano, and Sean Turner. “Algorithm Transition
for the RPKI”. In: IETF 79. Beijing, China, Nov. 2010. url: https:
//datatracker.ietf.org/meeting/79/materials/slides-79-sidr-

4.
[37] Steve Kent and Kotikalapudi Sriram. “RPKI rsync Download Delay

Modeling”. In: IETF 86. Orlando, Florida, USA, Mar. 2013. url: https:
//datatracker.ietf.org/meeting/86/materials/slides-86-sidr-

1.
[38] John Kristoff et al. “On Measuring RPKI Relying Parties”. In: Proceedings

of the ACM Internet Measurement Conference. IMC ’20. Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 484–491. isbn:
9781450381383. doi: 10.1145/3419394.3423622. url: https://doi.
org/10.1145/3419394.3423622.

[39] NLnet Labs. Private communications. Mar. 2025.
[40] NLnet Labs. NLnet Labs RPKI statistics. url: https://rov-measurements.

nlnetlabs.net/stats/ (visited on 03/21/2025).
[41] Leslie Lamport. Constructing Digital Signatures from a One Way Func-

tion. Tech. rep. CSL-98. Oct. 1979. url: https://www.microsoft.com/
en-us/research/publication/constructing-digital-signatures-

one-way-function/.
[42] Weitong Li et al. “RoVista: Measuring and Analyzing the Route Origin

Validation (ROV) in RPKI”. In: Proceedings of the 2023 ACM on Internet
Measurement Conference. IMC ’23. Montreal QC, Canada: Association
for Computing Machinery, 2023, pp. 73–88. isbn: 9798400703829. doi:
10.1145/3618257.3624806. url: https://doi.org/10.1145/3618257.
3624806.

[43] Alexey Melnikov. [sidr] draft-ietf-sidr-algorithm-agility submitted to AD
for publication. IETFMail Archive. Nov. 2012. url: https://mailarchive.
ietf.org/arch/msg/sidr/i1tFaczvglAejudx3qwYBd3BoDs/.

[44] Alexey Melnikov. Shepherd writeup for draft-ietf-sidr-algorithm-agility.
Nov. 2012. url: https://datatracker.ietf.org/doc/draft-ietf-
sidr-algorithm-agility/shepherdwriteup/.

85

https://doi.org/10.1145/3548606.3560645
https://doi.org/10.1145/3548606.3560645
https://doi.org/10.1145/3548606.3560645
https://doi.org/10.1109/DSN.2018.00070
https://doi.org/10.1145/3617182
https://doi.org/10.1145/3617182
https://doi.org/10.1145/3617182
https://blog.apnic.net/2023/10/31/how-we-measure-dnssec-validation/
https://blog.apnic.net/2023/10/31/how-we-measure-dnssec-validation/
https://blog.apnic.net/2023/11/09/how-we-measure-rpki-roa-signing-and-route-origination-validation/
https://blog.apnic.net/2023/11/09/how-we-measure-rpki-roa-signing-and-route-origination-validation/
https://blog.apnic.net/2023/11/09/how-we-measure-rpki-roa-signing-and-route-origination-validation/
https://datatracker.ietf.org/meeting/82/materials/slides-82-sidr-5
https://datatracker.ietf.org/meeting/82/materials/slides-82-sidr-5
https://datatracker.ietf.org/meeting/79/materials/slides-79-sidr-4
https://datatracker.ietf.org/meeting/79/materials/slides-79-sidr-4
https://datatracker.ietf.org/meeting/79/materials/slides-79-sidr-4
https://datatracker.ietf.org/meeting/86/materials/slides-86-sidr-1
https://datatracker.ietf.org/meeting/86/materials/slides-86-sidr-1
https://datatracker.ietf.org/meeting/86/materials/slides-86-sidr-1
https://doi.org/10.1145/3419394.3423622
https://doi.org/10.1145/3419394.3423622
https://doi.org/10.1145/3419394.3423622
https://rov-measurements.nlnetlabs.net/stats/
https://rov-measurements.nlnetlabs.net/stats/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.1145/3618257.3624806
https://doi.org/10.1145/3618257.3624806
https://doi.org/10.1145/3618257.3624806
https://mailarchive.ietf.org/arch/msg/sidr/i1tFaczvglAejudx3qwYBd3BoDs/
https://mailarchive.ietf.org/arch/msg/sidr/i1tFaczvglAejudx3qwYBd3BoDs/
https://datatracker.ietf.org/doc/draft-ietf-sidr-algorithm-agility/shepherdwriteup/
https://datatracker.ietf.org/doc/draft-ietf-sidr-algorithm-agility/shepherdwriteup/


[45] Donika Mirdita, Haya Schulmann, and Michael Waidner. SoK: An Intro-
spective Analysis of RPKI Security. 2024. arXiv: 2408.12359 [cs.CR].
url: https://arxiv.org/abs/2408.12359.

[46] Q Misell. A BPKI key rollover protocol for the Resource Public Key
Infrastructure (RPKI). Internet-Draft draft-misell-rpki-bpki-key-rollover-
00. Work in Progress. Internet Engineering Task Force, July 2024. 6 pp.
url: https://datatracker.ietf.org/doc/draft- misell- rpki-
bpki-key-rollover/00/.

[47] Dustin Moody et al. Transition to post-quantum cryptography standards.
Tech. rep. National Institute of Standards and Technology, 2024. doi:
https://doi.org/10.6028/NIST.IR.8547.ipd.

[48] Michele Mosca and Marco Piani. Quantum Threat Timeline Report
2023. Tech. rep. Global Risk Institute, Dec. 2023. url: https : / /

globalriskinstitute . org / publication / 2023 - quantum - threat -

timeline-report/.
[49] Moritz Müller et al. “Retrofitting post-quantum cryptography in internet

protocols: a case study of DNSSEC”. In: SIGCOMM Comput. Commun.
Rev. 50.4 (Oct. 2020), pp. 49–57. issn: 0146-4833. doi: 10.1145/3431832.
3431838. url: https://doi.org/10.1145/3431832.3431838.

[50] National Institute of Standards and Technology. NIST RPKI Monitor.
url: https://rpki-monitor.antd.nist.gov/ (visited on 06/02/2025).

[51] RIPE NCC. RIPE Atlas. url: https://atlas.ripe.net/.
[52] RIPE NCC. Routing Information Service. url: https://ris.ripe.net/.
[53] RIPE NCC. YouTube Hijacking: A RIPE NCC RIS ase study. url:

https://www.ripe.net/about- us/news/youtube- hijacking- a-

ripe-ncc-ris-case-study/ (visited on 05/15/2025).
[54] University of Oregon. RouteViews. url: https://www.routeviews.

org/.
[55] Mike Ounsworth et al. Composite ML-DSA for use in X.509 Public Key

Infrastructure and CMS. Internet-Draft draft-ietf-lamps-pq-composite-
sigs-04. Work in Progress. Internet Engineering Task Force, Mar. 2025.
82 pp. url: https://datatracker.ietf.org/doc/draft-ietf-lamps-
pq-composite-sigs/04/.

[56] Thomas Pornin. New Efficient, Constant-Time Implementations of Falcon.
2019.

[57] Jon Postel. NCP/TCP transition plan. RFC 801. Nov. 1981. doi: 10.
17487/RFC0801. url: https://www.rfc-editor.org/info/rfc801.

[58] Mikhail Puzanov. “Low Latency RPKI Validation”. In: RIPE 88. Record-
ing: https://ripe88.ripe.net/archives/video/1370/. May 2024.
url: https://ripe88.ripe.net/wp-content/uploads/presentations/
11-Low-latency-RPKI-validation.pdf.

[59] Lars Ran. Wedges, oil, and vinegar – An analysis of UOV in characteristic
2. Cryptology ePrint Archive, Paper 2025/1143. Presented at Eurocrypt
2025. 2025. url: https://eprint.iacr.org/2025/1143.

[60] Andreas Reuter et al. “Towards a Rigorous Methodology for Measuring
Adoption of RPKI Route Validation and Filtering”. In: SIGCOMM
Comput. Commun. Rev. 48.1 (Apr. 2018), pp. 19–27. issn: 0146-4833.
doi: 10.1145/3211852.3211856. url: https://doi.org/10.1145/
3211852.3211856.

[61] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. In: Commun. ACM 21.2 (Feb.
1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url:
https://doi.org/10.1145/359340.359342.

[62] Austein Rob. Re: [sidr] key rollover and algorithm migration. IETF Mail
Archive. June 2010. url: https://mailarchive.ietf.org/arch/msg/
sidr/7aaXNzQm5rD7rd5ucsaE-voK51U/.

86

https://arxiv.org/abs/2408.12359
https://arxiv.org/abs/2408.12359
https://datatracker.ietf.org/doc/draft-misell-rpki-bpki-key-rollover/00/
https://datatracker.ietf.org/doc/draft-misell-rpki-bpki-key-rollover/00/
https://doi.org/https://doi.org/10.6028/NIST.IR.8547.ipd
https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/
https://doi.org/10.1145/3431832.3431838
https://doi.org/10.1145/3431832.3431838
https://doi.org/10.1145/3431832.3431838
https://rpki-monitor.antd.nist.gov/
https://atlas.ripe.net/
https://ris.ripe.net/
https://www.ripe.net/about-us/news/youtube-hijacking-a-ripe-ncc-ris-case-study/
https://www.ripe.net/about-us/news/youtube-hijacking-a-ripe-ncc-ris-case-study/
https://www.routeviews.org/
https://www.routeviews.org/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/04/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/04/
https://doi.org/10.17487/RFC0801
https://doi.org/10.17487/RFC0801
https://www.rfc-editor.org/info/rfc801
https://ripe88.ripe.net/archives/video/1370/
https://ripe88.ripe.net/wp-content/uploads/presentations/11-Low-latency-RPKI-validation.pdf
https://ripe88.ripe.net/wp-content/uploads/presentations/11-Low-latency-RPKI-validation.pdf
https://eprint.iacr.org/2025/1143
https://doi.org/10.1145/3211852.3211856
https://doi.org/10.1145/3211852.3211856
https://doi.org/10.1145/3211852.3211856
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://mailarchive.ietf.org/arch/msg/sidr/7aaXNzQm5rD7rd5ucsaE-voK51U/
https://mailarchive.ietf.org/arch/msg/sidr/7aaXNzQm5rD7rd5ucsaE-voK51U/


[63] Nils Rodday et al. “Revisiting rpki route origin validation on the data
plane”. In: Proc. of Network Traffic Measurement and Analysis Conference
(TMA), IFIP. 2021.

[64] Nils Rodday et al. “The Resource Public Key Infrastructure (RPKI): A
Survey on Measurements and Future Prospects”. In: IEEE Transactions
on Network and Service Management 21.2 (2024), pp. 2353–2373. doi:
10.1109/TNSM.2023.3327455.

[65] Khwaja Zubair Sediqi et al. “Syncing with RPKI: Exploring Causes of
Delay in Relying Party Synchronization”. In: RIPE 88. Recording: https:
//ripe88.ripe.net/archives/video/1384/. May 2024. url: https:
//ripe88.ripe.net/presentations/121-rpki_synchronization_

delay_Zubair.pdf.
[66] P.W. Shor. “Algorithms for quantum computation: discrete logarithms

and factoring”. In: Proceedings 35th Annual Symposium on Foundations
of Computer Science. Nov. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.
365700.

[67] Aftab Siddiqui. What Happened? The Amazon Route 53 BGP Hijack to
Take Over Ethereum Cryptocurrency Wallets. Mutually Agreed Norms
for Routing Security (MANRS). url: https://www.internetsociety.
org/blog/2018/04/amazons- route- 53- bgp- hijack/ (visited on
05/15/2025).

[68] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. “As-
sessing the overhead of post-quantum cryptography in TLS 1.3 and
SSH”. In: Proceedings of the 16th International Conference on Emerg-
ing Networking EXperiments and Technologies. CoNEXT ’20. Barcelona,
Spain: Association for Computing Machinery, 2020, pp. 149–156. isbn:
9781450379489. doi: 10.1145/3386367.3431305. url: https://doi.
org/10.1145/3386367.3431305.

[69] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. “Post-
Quantum Authentication in TLS 1.3: A Performance Study”. In: Net-
work and Distributed Systems Security (NDSS) Symposium 2020. San
Diego, CA, USA, Feb. 2020. doi: 10.14722/ndss.2020.24203. url:
https://www.ndss- symposium.org/ndss- paper/post- quantum-

authentication-in-tls-1-3-a-performance-study/.
[70] Job Snijders. Private communications. Apr. 2025.
[71] Job Snijders. [Sidrops] Signed Object signed with Ed25519 (RFC 8419

proof-of-concept). IETFMail Archive. Sept. 2023. url: https://mailarchive.
ietf.org/arch/msg/sidrops/CG2BWxOa6Ly8F0huOULIBd4hGEc/.

[72] Job Snijders. policy proposal: ”Automatic Revocation of Persistently Non-
functional Delegated RPKI CAs”. RIPE Routing Working Group Mail
Archive. Feb. 2025. url: https://mailman.ripe.net/archives/list/
routing-wg@ripe.net/thread/USQUMNOE3L3UUD3JZVI6LH7VMDRPL7K4/.

[73] Job Snijders. Re: ARIN RPKI Trust Anchor Issue. NANOG mailing list.
Jan. 2025. url: https://lists.nanog.org/archives/list/nanog@
lists.nanog.org/message/OSAQ7LZJZHILPGJD4VNXVGQ3U5OIGIN5/.

[74] Job Snijders. RPKI’s 2024 Year in Review. RIPE Labs. Jan. 2025. url:
https://labs.ripe.net/author/job_snijders/rpkis-2024-year-

in-review/ (visited on 05/30/2025).
[75] Job Snijders and Theo Buehler. Constraining RPKI Trust Anchors.

Internet-Draft draft-snijders-constraining-rpki-trust-anchors-08. Work in
Progress. Internet Engineering Task Force, May 2025. 103 pp. url: https:
/ / datatracker . ietf . org / doc / draft - snijders - constraining -

rpki-trust-anchors/08/.
[76] Bruijnzeels Tim. Re: [sidr] RPKI: Three questions regarding RFC 6487.

IETF Mail Archive. Jan. 2019. url: https://mailarchive.ietf.org/
arch/msg/sidr/4ycmff9jEU4VU9gGK5RyhZ7JYsQ/.

87

https://doi.org/10.1109/TNSM.2023.3327455
https://ripe88.ripe.net/archives/video/1384/
https://ripe88.ripe.net/archives/video/1384/
https://ripe88.ripe.net/presentations/121-rpki_synchronization_delay_Zubair.pdf
https://ripe88.ripe.net/presentations/121-rpki_synchronization_delay_Zubair.pdf
https://ripe88.ripe.net/presentations/121-rpki_synchronization_delay_Zubair.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/
https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/
https://doi.org/10.1145/3386367.3431305
https://doi.org/10.1145/3386367.3431305
https://doi.org/10.1145/3386367.3431305
https://doi.org/10.14722/ndss.2020.24203
https://www.ndss-symposium.org/ndss-paper/post-quantum-authentication-in-tls-1-3-a-performance-study/
https://www.ndss-symposium.org/ndss-paper/post-quantum-authentication-in-tls-1-3-a-performance-study/
https://mailarchive.ietf.org/arch/msg/sidrops/CG2BWxOa6Ly8F0huOULIBd4hGEc/
https://mailarchive.ietf.org/arch/msg/sidrops/CG2BWxOa6Ly8F0huOULIBd4hGEc/
https://mailman.ripe.net/archives/list/routing-wg@ripe.net/thread/USQUMNOE3L3UUD3JZVI6LH7VMDRPL7K4/
https://mailman.ripe.net/archives/list/routing-wg@ripe.net/thread/USQUMNOE3L3UUD3JZVI6LH7VMDRPL7K4/
https://lists.nanog.org/archives/list/nanog@lists.nanog.org/message/OSAQ7LZJZHILPGJD4VNXVGQ3U5OIGIN5/
https://lists.nanog.org/archives/list/nanog@lists.nanog.org/message/OSAQ7LZJZHILPGJD4VNXVGQ3U5OIGIN5/
https://labs.ripe.net/author/job_snijders/rpkis-2024-year-in-review/
https://labs.ripe.net/author/job_snijders/rpkis-2024-year-in-review/
https://datatracker.ietf.org/doc/draft-snijders-constraining-rpki-trust-anchors/08/
https://datatracker.ietf.org/doc/draft-snijders-constraining-rpki-trust-anchors/08/
https://datatracker.ietf.org/doc/draft-snijders-constraining-rpki-trust-anchors/08/
https://mailarchive.ietf.org/arch/msg/sidr/4ycmff9jEU4VU9gGK5RyhZ7JYsQ/
https://mailarchive.ietf.org/arch/msg/sidr/4ycmff9jEU4VU9gGK5RyhZ7JYsQ/


[77] Harrison Tom. Re: [Sidrops] I-D Action: draft-ietf-sidrops-signed-tal-09.txt.
IETF Mail Archive. Apr. 2022. url: https://mailarchive.ietf.org/
arch/msg/sidrops/A8JqQUv7aT5ioj4UWtqsULnhqYM/.

[78] Thom Wiggers. Post-Quantum signatures zoo. PQShield. Data from
https://github.com/PQShield/nist- sigs- zoo/tree/d525707/

data/parametersets.csv. url: https://pqshield.github.io/nist-
sigs-zoo/ (visited on 06/02/2025).

[RFC4271] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol
4 (BGP-4). RFC 4271. Jan. 2006. doi: 10.17487/RFC4271. url: https:
//www.rfc-editor.org/info/rfc4271.

[RFC5280] Sharon Boeyen et al. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 5280. May 2008.
doi: 10.17487/RFC5280. url: https://www.rfc-editor.org/info/
rfc5280.

[RFC5652] Russ Housley. Cryptographic Message Syntax (CMS). RFC 5652. Sept.
2009. doi: 10.17487/RFC5652. url: https://www.rfc-editor.org/
info/rfc5652.

[RFC6480] Matt Lepinski and Stephen Kent. An Infrastructure to Support Secure
Internet Routing. RFC 6480. Feb. 2012. doi: 10.17487/RFC6480. url:
https://www.rfc-editor.org/info/rfc6480.

[RFC6483] Geoff Huston and George G. Michaelson. Validation of Route Origination
Using the Resource Certificate Public Key Infrastructure (PKI) and Route
Origin Authorizations (ROAs). RFC 6483. Feb. 2012. doi: 10.17487/
RFC6483. url: https://www.rfc-editor.org/info/rfc6483.

[RFC6484] Derrick Kong et al. Certificate Policy (CP) for the Resource Public Key
Infrastructure (RPKI). RFC 6484. Feb. 2012. doi: 10.17487/RFC6484.
url: https://www.rfc-editor.org/info/rfc6484.

[RFC6485] Geoff Huston. The Profile for Algorithms and Key Sizes for Use in the
Resource Public Key Infrastructure (RPKI). RFC 6485. Feb. 2012. doi: 10.
17487/RFC6485. url: https://www.rfc-editor.org/info/rfc6485.

[RFC6486] Matt Lepinski et al. Manifests for the Resource Public Key Infrastructure
(RPKI). RFC 6486. Feb. 2012. doi: 10.17487/RFC6486. url: https:
//www.rfc-editor.org/info/rfc6486.

[RFC6487] Geoff Huston, Robert Loomans, and George G. Michaelson. A Profile
for X.509 PKIX Resource Certificates. RFC 6487. Feb. 2012. doi: 10.
17487/RFC6487. url: https://www.rfc-editor.org/info/rfc6487.

[RFC6488] Matt Lepinski, Andrew Chi, and Stephen Kent. Signed Object Template
for the Resource Public Key Infrastructure (RPKI). RFC 6488. Feb. 2012.
doi: 10.17487/RFC6488. url: https://www.rfc-editor.org/info/
rfc6488.

[RFC6489] Stephen Kent, Geoff Huston, and George G. Michaelson. Certification
Authority (CA) Key Rollover in the Resource Public Key Infrastructure
(RPKI). RFC 6489. Feb. 2012. doi: 10.17487/RFC6489. url: https:
//www.rfc-editor.org/info/rfc6489.

[RFC6490] Sam Weiler et al. Resource Public Key Infrastructure (RPKI) Trust
Anchor Locator. RFC 6490. Feb. 2012. doi: 10.17487/RFC6490. url:
https://www.rfc-editor.org/info/rfc6490.

[RFC6492] Byron Ellacott et al. A Protocol for Provisioning Resource Certificates.
RFC 6492. Feb. 2012. doi: 10.17487/RFC6492. url: https://www.rfc-
editor.org/info/rfc6492.

[RFC6810] Randy Bush and Rob Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol. RFC 6810. Jan. 2013. doi: 10.17487/RFC6810.
url: https://www.rfc-editor.org/info/rfc6810.

[RFC6811] Prodosh Mohapatra et al. BGP Prefix Origin Validation. RFC 6811. Jan.
2013. doi: 10.17487/RFC6811. url: https://www.rfc-editor.org/
info/rfc6811.

88

https://mailarchive.ietf.org/arch/msg/sidrops/A8JqQUv7aT5ioj4UWtqsULnhqYM/
https://mailarchive.ietf.org/arch/msg/sidrops/A8JqQUv7aT5ioj4UWtqsULnhqYM/
https://github.com/PQShield/nist-sigs-zoo/tree/d525707/data/parametersets.csv
https://github.com/PQShield/nist-sigs-zoo/tree/d525707/data/parametersets.csv
https://pqshield.github.io/nist-sigs-zoo/
https://pqshield.github.io/nist-sigs-zoo/
https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://doi.org/10.17487/RFC5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://doi.org/10.17487/RFC5652
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5652
https://doi.org/10.17487/RFC6480
https://www.rfc-editor.org/info/rfc6480
https://doi.org/10.17487/RFC6483
https://doi.org/10.17487/RFC6483
https://www.rfc-editor.org/info/rfc6483
https://doi.org/10.17487/RFC6484
https://www.rfc-editor.org/info/rfc6484
https://doi.org/10.17487/RFC6485
https://doi.org/10.17487/RFC6485
https://www.rfc-editor.org/info/rfc6485
https://doi.org/10.17487/RFC6486
https://www.rfc-editor.org/info/rfc6486
https://www.rfc-editor.org/info/rfc6486
https://doi.org/10.17487/RFC6487
https://doi.org/10.17487/RFC6487
https://www.rfc-editor.org/info/rfc6487
https://doi.org/10.17487/RFC6488
https://www.rfc-editor.org/info/rfc6488
https://www.rfc-editor.org/info/rfc6488
https://doi.org/10.17487/RFC6489
https://www.rfc-editor.org/info/rfc6489
https://www.rfc-editor.org/info/rfc6489
https://doi.org/10.17487/RFC6490
https://www.rfc-editor.org/info/rfc6490
https://doi.org/10.17487/RFC6492
https://www.rfc-editor.org/info/rfc6492
https://www.rfc-editor.org/info/rfc6492
https://doi.org/10.17487/RFC6810
https://www.rfc-editor.org/info/rfc6810
https://doi.org/10.17487/RFC6811
https://www.rfc-editor.org/info/rfc6811
https://www.rfc-editor.org/info/rfc6811


[RFC6916] Roque Gagliano, Stephen Kent, and Sean Turner. Algorithm Agility
Procedure for the Resource Public Key Infrastructure (RPKI). RFC 6916.
Apr. 2013. doi: 10.17487/RFC6916. url: https://www.rfc-editor.
org/info/rfc6916.

[RFC7935] Geoff Huston and George G. Michaelson. The Profile for Algorithms
and Key Sizes for Use in the Resource Public Key Infrastructure. RFC
7935. Aug. 2016. doi: 10.17487/RFC7935. url: https://www.rfc-
editor.org/info/rfc7935.

[RFC8181] Sam Weiler, Anuja Sonalker, and Rob Austein. A Publication Protocol
for the Resource Public Key Infrastructure (RPKI). RFC 8181. July 2017.
doi: 10.17487/RFC8181. url: https://www.rfc-editor.org/info/
rfc8181.

[RFC8182] Tim Bruijnzeels et al. The RPKI Repository Delta Protocol (RRDP).
RFC 8182. July 2017. doi: 10.17487/RFC8182. url: https://www.rfc-
editor.org/info/rfc8182.

[RFC8183] Rob Austein. An Out-of-Band Setup Protocol for Resource Public Key
Infrastructure (RPKI) Production Services. RFC 8183. July 2017. doi: 10.
17487/RFC8183. url: https://www.rfc-editor.org/info/rfc8183.

[RFC8205] Matt Lepinski and Kotikalapudi Sriram. BGPsec Protocol Specification.
RFC 8205. Sept. 2017. doi: 10.17487/RFC8205. url: https://www.rfc-
editor.org/info/rfc8205.

[RFC8210] Randy Bush and Rob Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1. RFC 8210. Sept. 2017. doi: 10.
17487/RFC8210. url: https://www.rfc-editor.org/info/rfc8210.

[RFC8211] Stephen Kent and Di Ma. Adverse Actions by a Certification Authority
(CA) or Repository Manager in the Resource Public Key Infrastructure
(RPKI). RFC 8211. Sept. 2017. doi: 10.17487/RFC8211. url: https:
//www.rfc-editor.org/info/rfc8211.

[RFC8391] Andreas Huelsing et al. XMSS: eXtended Merkle Signature Scheme. RFC
8391. May 2018. doi: 10.17487/RFC8391. url: https://www.rfc-
editor.org/info/rfc8391.

[RFC8554] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-
Based Signatures. RFC 8554. Apr. 2019. doi: 10.17487/RFC8554. url:
https://www.rfc-editor.org/info/rfc8554.

[RFC8608] Sean Turner and Oliver Borchert. BGPsec Algorithms, Key Formats, and
Signature Formats. RFC 8608. June 2019. doi: 10.17487/RFC8608. url:
https://www.rfc-editor.org/info/rfc8608.

[RFC8630] Geoff Huston et al. Resource Public Key Infrastructure (RPKI) Trust
Anchor Locator. RFC 8630. Aug. 2019. doi: 10.17487/RFC8630. url:
https://www.rfc-editor.org/info/rfc8630.

[RFC9319] Yossi Gilad et al. The Use of maxLength in the Resource Public Key
Infrastructure (RPKI). RFC 9319. Oct. 2022. doi: 10.17487/RFC9319.
url: https://www.rfc-editor.org/info/rfc9319.

[RFC9455] Zhiwei Yan et al. Avoiding Route Origin Authorizations (ROAs) Contain-
ing Multiple IP Prefixes. RFC 9455. Aug. 2023. doi: 10.17487/RFC9455.
url: https://www.rfc-editor.org/info/rfc9455.

[RFC9582] Job Snijders et al. A Profile for Route Origin Authorizations (ROAs).
RFC 9582. May 2024. doi: 10.17487/RFC9582. url: https://www.rfc-
editor.org/info/rfc9582.

[RFC9691] Carlos M. Mart́ınez et al. A Profile for Resource Public Key Infrastructure
(RPKI) Trust Anchor Keys (TAKs). RFC 9691. Dec. 2024. doi: 10.
17487/RFC9691. url: https://www.rfc-editor.org/info/rfc9691.

89

https://doi.org/10.17487/RFC6916
https://www.rfc-editor.org/info/rfc6916
https://www.rfc-editor.org/info/rfc6916
https://doi.org/10.17487/RFC7935
https://www.rfc-editor.org/info/rfc7935
https://www.rfc-editor.org/info/rfc7935
https://doi.org/10.17487/RFC8181
https://www.rfc-editor.org/info/rfc8181
https://www.rfc-editor.org/info/rfc8181
https://doi.org/10.17487/RFC8182
https://www.rfc-editor.org/info/rfc8182
https://www.rfc-editor.org/info/rfc8182
https://doi.org/10.17487/RFC8183
https://doi.org/10.17487/RFC8183
https://www.rfc-editor.org/info/rfc8183
https://doi.org/10.17487/RFC8205
https://www.rfc-editor.org/info/rfc8205
https://www.rfc-editor.org/info/rfc8205
https://doi.org/10.17487/RFC8210
https://doi.org/10.17487/RFC8210
https://www.rfc-editor.org/info/rfc8210
https://doi.org/10.17487/RFC8211
https://www.rfc-editor.org/info/rfc8211
https://www.rfc-editor.org/info/rfc8211
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391
https://www.rfc-editor.org/info/rfc8391
https://doi.org/10.17487/RFC8554
https://www.rfc-editor.org/info/rfc8554
https://doi.org/10.17487/RFC8608
https://www.rfc-editor.org/info/rfc8608
https://doi.org/10.17487/RFC8630
https://www.rfc-editor.org/info/rfc8630
https://doi.org/10.17487/RFC9319
https://www.rfc-editor.org/info/rfc9319
https://doi.org/10.17487/RFC9455
https://www.rfc-editor.org/info/rfc9455
https://doi.org/10.17487/RFC9582
https://www.rfc-editor.org/info/rfc9582
https://www.rfc-editor.org/info/rfc9582
https://doi.org/10.17487/RFC9691
https://doi.org/10.17487/RFC9691
https://www.rfc-editor.org/info/rfc9691


Appendix A

Measuring RRDP
bandwidth

In section 4.2.1.2, we used a worst-case estimate of the bandwidth b at which the RPKI
is downloaded over RRDP. This estimate was based on the 4 minutes duration stated
by [25], and assuming that tconst in the model tdownload = tconst+

s
b is negligible. This

provided useful, but very conservative numbers to evaluate post-quantum algorithms
with. However, since we know tconst to be significant, it is useful to obtain a more
realistic estimate, which is the purpose of section 4.2.1.3 and this appendix.

To better estimate b or s
b we measure it directly, using an instrumented version of

Routinator v0.14.1.

As announced in 4.2.1.3, we modify Routinator to log the total duration of every
HTTPS request, and the total size of the RPKI objects (after base-64 decoding) embed-
ded in the downloaded RRDP snapshot files. Then, we perform several measurements
of downloading new snapshots, and use this to obtain a better estimate of the duration
s
b : 14.5 seconds on average from a data center.

A.1 Method

We modify Routinator to log for each request the difference in time between the start
of the request and the end of the response, as well as the requested URL. Additionally,
while parsing RRDP snapshot files, we collect the total size of the RPKI objects
in <publish> elements, after base-64 decoding. This corresponds to the actual file
sizes of the objects, but excludes overhead due to the XML format and base-64
encoding.

After collecting these logs, we obtain the total time spent downloading snapshot files,
which is s

b . The time spent downloading notification files is not part of this, as it does
not change based on the key and signature sizes, and is chosen to be part of tconst
instead. RRDP delta files are never downloaded in a fresh downloading run: they are
only used to update an existing local cache. Our measuring of the RPKI sizes is not
necessary to obtain s

b , but servers as a sanity check (for example including the total
amount that was downloaded, which should be s), and gives insight on differences
between repositories.

Our modified Routinator can be installed with:

cargo install \

--git https://github.com/SIDN/pqc-routinator \

--branch measuring-rrdp-bandwidth routinator --locked

Using this modified Routinator, we download a fresh copy of the RPKI 10 times. We
use the --disable-rsync and --rrdp-connect-timeout 30 flags to ensure that only
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RRDP is used, and to avoid waiting for a long time for a few repositories that never
respond.1

The following shell script was used to perform the measurements, and extract the
relevant logs to JSON files.

for i in {1..10} ; do

/usr/bin/time -f "%e, %U, %S" -a -o update_time.csv \

routinator \

-v --logfile "timing_${i}.log" \

--fresh --disable-rsync --rrdp-connect-timeout 30 update;

# Extract content sizes of RPKI objects in snapshots.

cat timing_${i}.log \

| grep "size: " \

| jq -Rs ’

split("\n[") | [

.[] | split(", ") | {

size: (.[0] | split("size: ") | .[1] | tonumber),

session: .[2],

serial: (.[3] | tonumber)

}

]

’ > snapshots_${i}.json;

# Extract timing of HTTP requests.

cat timing_${i}.log \

| grep "timing: " \

| jq -Rs ’

split("\n[") | [

.[] | split(", ") | {

url: (.[0] | split("timing: ") | .[1]),

time: (.[1] | tonumber)

}

]

’ > timings_${i}.json;

echo "Done with run $i.";

done

Then, we matched every snapshot size log entry (containing session ID, serial number
and size) with the unique corresponding timing log entry (containing the URL and
time taken to download in µs) by searching for the session ID and the term “snapshot”
in the URLs. From this information (pairs of time and size for every successfully
downloaded RRDP snapshot), we calculate statistics on the time spent downloading
actual RPKI objects.

Measurement setup To simulate a typical relying party, we use a virtual machine
in the SIDN Labs network (AS 215088), with roughly 2 Gbps bandwidth to the
internet.

A.2 Results

By measuring 10 times from the SIDN Labs network, we get the results in table A.1.
Our full data is available at https://github.com/SIDN/pqc-rpki/, and on request
from the author and Radboud University.

1From inspecting the logs, we have confirmed that during our testing, the same repositories
consistently failed to respond, so adding the timeout did not affect the measurements, that only trace
successful HTTP requests.
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We measure several things:

Snapshots is the mean of the sum of times for downloading individual RRDP snapshot
XML files. This is the time that is really spent downloading RPKI content: in
a fresh download, Routinator downloads everything using only snapshots, no
delta files (and we have disabled rsync).

Notifications measures the time downloading RRDP notification files. These do not
include any actual RPKI objects, so do not depend on the key and signature sizes.
Hence, it is part of tconst and not s

b . Since snapshots are always downloaded after
a notification file, the (constant) cost of the initial connection to a repository
falls under this category: downloading the snapshot normally reuses the existing
connection.

Total duration is the wall-clock time for the full invocation of Routinator, which
depends heavily on the configured timeouts, and includes time spent parsing
files, as well as time spent on unsuccessful HTTP requests, such as those for a
few repositories that do not respond.

Out of these, the time for downloading snapshots is exactly the value for s
b that we

need. For all of the measurements, the total size of the downloaded RPKI objects
is roughly 802 MB: slightly less than the 838 MB from table 4.1. This difference is
expected, as we have disabled rsync, causing a few repositories are missing, and the
measurements are from a different date (2025-03-04).

As expected, we find that s
b is indeed only a small part of the total duration. From

our machine, the size-dependent fraction of the downloading time was roughly 14.5
seconds: only about 6% of the 4 minutes used as worst-case estimate in section 4.2.1.
That corresponds to an effective bandwidth of 802 MB

14.5 s = 55.3 MB/s, as opposed to
the 3.5 MB/s found there.2

Therefore, for many validators, it makes sense to assume much faster transfer of the
actual RPKI content, although 14.5 seconds is on a machine with very good bandwidth,
that might not be representative for many validators. Even assuming several times
lower bandwidth, the time spent downloading is far below the 4 minutes used in
section 4.2.1.

Table A.1: Time spent downloading RRDP snapshots.

Location Measurement Mean time (s) Std. dev. (s)

SIDN Labs VM Snapshots 14.5 1.5

Notifications 29.5 5.6

Total wall clock duration 323.9 13.7

2That is, the speed of downloading in terms of the RPKI objects’ content size, not their base-64
encoded and possibly compressed form that actually goes over the network.
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Appendix B

Measuring RP readiness

In this appendix, we suggest several procedures for measuring RP readiness to accept
products using a new algorithm. These are important for the first production CAs
to make an informed decision about when it is safe to migrate to the new algorithm
B.

Some of these experiments are specific to our mixed-tree algorithm transition, based
on the assumption that a testing CA can be created with algorithm B under an A
production issuer; this is not possible in the approach of [RFC6916]. However, we
also define procedures that can be used to monitor RP readiness during an [RFC6916]
migration, and during a (normal, A-to-A) TA key rollover.

While each of these experiments individually takes considerable effort to set up,
components can be shared between them.1 This makes performing a combination of
these experiments feasible, providing a very thorough view of the readiness of RPs to
accept new algorithms.

B.1 Monitoring RP software from a repository

As recommended in [RFC8182], RP software implementations indicate their name
and version in the User-Agent HTTP header, whenever they make RRDP requests
to a repository. This information provides a straightforward way to monitor what
software is used by RPs, since every RP normally accesses every repository periodically.
Measuring this can be done by simply logging the User-Agent header and IP address
of every request made to a repository.

This approach was used (measuring from a repository created specifically for this) in
[38] to identify which validator implementations were used. Next, the method also
appears (this time using APNIC’s repository) in [77]. Similarly, NLnet Labs collect
and report this information continuously since 2023.2

Logging User-Agent headers provides a complete view of the software that is active at
any time, as long as it supports RRDP. There are two limitations, that both can be
addressed:

• Not all validators use RRDP. Software that does not use RRDP does not show
up here. It is still easy to measure this small fraction, by logging access to the
rsync version of the measuring repository. This is also done in [38].

• The second most popular RP software, OpenBSD’s rpki-client, does not report
its version in the User-Agent header. This implementation currently accounts
for roughly 20% of RPs. This can be addressed by simply updating rpki-client
to report a version number.

1For example, logging User-Agent headers as in appendix B.1 can be done on the parent repository
from B.2, and CAs created for B.2 can also be used to create the ROAs for B.4.

2Data is collected on the rov-measurements.nlnetlabs.net repository, and a basic analysis is
shown on https://rov-measurements.nlnetlabs.net/stats/.
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Test repository alg. B

CA 5 (alg. B)

Parent repository

CA 1 (alg. A)

Cert 2
from 1

Cert 3
from 1

CA 3 (alg. B)

Cert 5
from 3

Test repository alg. A

CA 4 (alg. A)

CA 2 (alg. A)

Cert 4
from 2

Figure B.1: Example structure to measure RPs that reach repositories through a B
certificate, versus only through A certificates. RPs access the ’Test repository alg. B’
only if they validate the certificates for CAs 3 (with B subject) and 5 (with B issuer).
Other CAs will reach only the ’Test repository alg. A’ (which could be left out and
replaced by monitoring access to the parent repository).

For both limitations, the next method in B.2 provides more reliable results, just
without the granularity of a precise version.

The User-Agent header is a simple and effective way to measure the versions of RP
software that are in use. This kind of monitoring is already being done in practice
and does not require e.g. introducing an experimental algorithm B CA.

B.2 Measuring reachability of B repository

Another way to measure directly how many RPs accept an algorithm B is by monitoring
requests to a testing repository that is only advertised under an algorithm B resource
certificate. RPs that do not understand algorithm B will reject the resource certificate
that points to the testing repository, and hence never access it. The (number of)
RPs that reach the testing repository can be compared to those that reach another
(advertised through an all-A chain) repository, to count or identify the RPs that are
not ready. An example of a structure of CAs and repositories that can be made to
measure this is shown in fig. B.1.

This method is more reliable than the previous one. It measures the real acceptance of
algorithm B by RPs, so it accounts for differences in configuration,3 and validators that
do not report accurate version information. It also covers rsync-only validators.

B.3 Measuring use of a new TAL

During a TA key rollover (see section 6.2.3.2), it is necessary to monitor whether all
RPs are using the new TAL, before the old TAL can be removed, or even before the
TA’s direct subordinate certificates’ (that are usually also under control of an RIR)
Authority Information Access extension can safely be updated to refer to the new TA

3For example, support for a new algorithm could be behind an opt-in configuration option, such
that the version number does not indicate whether the algorithm is actually accepted.
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certificate.4 Much like the previous method, this can be done by monitoring requests
to the TA certificate linked in the new TAL, and comparing the requests to it with
those to the old TA certificate. When no RPs that access the old TA certificate do not
(also) access the new TA certificate, the new TAL is configured everywhere.

B.4 Measuring effect on routing

The previous methods all measure individual relying parties, and do so quite accurately.
However, the number of RPs is only a proxy for what is actually relevant: the impact
that migrating has on real-world routing. RPs that are not actually being used for
route filtering are much less important than those that are. Accordingly, we also
present two methods that measure propagation in actual routing.

A common technique to measure adoption of Route Origin Validation (ROV) is to
create a few specific ROAs, and announce routes through BGP, such that some routes
are ROV-Invalid, and others are ROV-Valid. Then, the propagation of an ROV-Valid
announcement can be compared with an ROV-Invalid one to get a rough idea of how
many ASes are performing ROV. This is used among others in [60, 31] and in several
online testing tools, such as [15].

We can use a modification of this technique to measure how many ASes either do not
perform ROV, or accept algorithm B, and compare it with the use of ROV accepting
only A.

• First, we create a ROA using A for a prefix a.b.0.0/23 for some AS X, and
announce the /23 prefix from that AS X.

• Next, we create a ROA using B for a more-specific prefix a.b.0.0/24 for a
different AS Y , and announce it from that AS Y . This announcement is ROV-
Valid to an RP that accepts B, and more-specific that the covering announcement.
Both networks that do not perform ROV, and those that perform ROV and
accept B should accept this announcement. On the other hand, networks that
perform ROV but do not accept B reject it as ROV-Invalid.

• To get a baseline of what announcements can be expected to be accepted, simply
because networks do not perform ROV, we also announce the more-specific
a.b.1.0/24 from AS Y . This is ROV-Invalid to any RP, so should only be
propagated by networks that do not perform ROV.

Of course, this method can be repeated for IPv6, with a /47 prefix and the two
contained /48 prefixes. Many alternative setups are also possible, such as periodically
creating and withdrawing the ROAs. The exact setup can be determined by imple-
menters. An example is shown in fig. B.2. Using such a setup, the real-world effect
can be measured in many ways.

B.4.1 Announcement propagation to BGP collectors

First, we can look directly at the propagation of different BGP announcements to
see how many and which ASes accept the announcement. This approach — often
categorized as a control-plane measurement — was first used in [29] in an uncontrolled
or passive experiment, looking at propagation of ROV-Invalid announcements that
occur naturally. It was also used in [31] for a controlled experiment where, as we
propose, several ROAs and announcements are made to purposefully create some
ROV-Invalid announcements. Then, BGP collectors such as RouteViews ([54]) and
RIPE RIS ([52]) report from many vantage points what BGP announcements they

4Although [RFC6487] does not require it and [RFC9691] forbids it, there was confusion about
whether the AIA’s value should be checked during validation. Therefore, there is some risk in the
temporarily inaccurate AIA value during TA key rollovers.
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CA (alg. A)

CA (alg. B)

User

AS X

makes ROV-Valid
(only if alg. B is accepted)

ROA (alg. B):
a.b.0.0/24-24 => AS Y

ROA (alg. A):
a.b.0.0/23-23 => AS X

Announcements:
a.b.0.0/23 AS X

AS Y
a.b.0.0/24 AS Y

makes ROV-Valid
(always)

a.b.1.0/24 AS Y

makes ROV-Invalid
(always)

Figure B.2: Example structure to measure propagation of algorithm B ROAs through
propagation of announcements. Three announcements are made. One will be used
only when ROV is performed and B is not accepted. One will only be used if ROV is
not performed, and the last is preferred when ROV is performed and B is accepted.
Use or propagation of these announcements can be measured from the ‘user’, which
can be a BGP collector, looking glass, or a real user.

see. This can be used to derive information about specific ASes and the internet as a
whole. For example, the following can be derived:

(1) If the a.b.0.0/24 ASY announcement (that is ROV-Valid only when the RP
accepts B) is seen just as much as the a.b.1.0/24 ASY (ROV-Valid to every RP),
then most ROV-performing networks must be accepting B.

(2) For a particular AS Z, if a route (ending with) a.b.1.0/24 ASZ ASY is seen, but
a.b.0.0/24 ASZ ASY is not, then AS Z is almost certainly performing ROV, but
not accepting B.

More details about the various kinds of conclusions that can be drawn from BGP
collectors with this kind of controlled experiment are given in [29, 31, 60], and applying
such analysis to the specific case of measuring RP readiness is left to the implementers
of the experiments we suggest.

B.4.2 Reachability from looking glasses

The BGP collectors used in the previous method do not have a complete view of
the internet, as many ASes do not peer with them. For some ASes it allows reliably
drawing conclusions, but many ASes are less visible.

An alternative to the control-plane measurement with BGP collectors is to do data-
plane experiments. As suggested in [60] and used in [31, 63], one can use looking
glasses like RIPE Atlas ([51]), that provide thousands of vantage points. From these,
one can directly measure the actual routing behaviour from many locations.

By hosting two different web servers for a.b.0.1, in AS Y and AS X that return
different content, we can check from a probe in AS Z whether the probe reaches the
server in AS Y or AS X. Reaching X means that at least some AS prevented the
a.b.0.0/24 ASY announcement from being used, so was performing ROV without
accepting B. Alternatively (or additionally), traceroute can be used to get informa-
tion about the entire path taken towards a.b.0.1, offering more insight into which
ASes might have filtered the a.b.0.0/24 ASY origination or not. Again, the details
of how to interpret such results are left to the implementers of the experiments, but
can be based on the methods used in [31, 63].
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B.4.3 Reachability from real users

To get even more insight in the real-world impact on reachability that switching to
algorithm B would have, one can even use real users, as opposed to RIPE Atlas
probes to try to reach a.b.0.1. This can be achieved with ad-based experiments, as
performed by APNIC to measure adoption of DNSSEC validation and ROV [33, 34].
This provides endlessly many vantage points, and can be used to measure impact by
the population of affected real-world users, instead of e.g. by the number of ASes.
While this method gives the least detailed information of the range of methods we
propose (only whether AS X or Y is reached), it does provide exactly the information
that really matters: whether real users will be able to reach everything normally if a
widespread algorithm migration were to happen.
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