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Machine learning and representations

« ML methods extract rules from data that can transform an input to an output

« ML methods require a representation of the input, which is an informative
description of the concept in the context of the task

Input (x) Output (y)

example.nl f(x) Not reported
securepayment.nl > Reported
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How to come to an input representation?

3 Photos by Lucas Calloch and Tyler Nix on Unsplash




Project goal

How to generate meaningful representations of DNS concepts from
query data using representation learning techniques?

Can we use the learned representations in downstream machine
learning tasks, for example, clustering and classification?




Word2avec: learn word representations (1/2)

« Developed for text, but also applied to songs (Spotify) and hotels (Airbnb)

 Goal: similar words have similar representations
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Wordavec: learn word representations (2/2)

« Assumption: similar words appear in similar contexts

« Task: train a model that predicts the surrounding words of a target word
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Example of word representations

“King” [ 0.50451 , 0.68607 , -0.59517 , .. ,-1.6106 , -0.64426 , -0.51042 ]
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Mapping DNS data to textual data

« Assumption: similar resolvers query similar domain names

« Task: train a model that predicts the "surrounding" resolvers of a target resolver

example.nl ['103.22.200.80°, '146.190.240.16°, '157.90.17.161, ..]
sidn.nl ['23.132.96.222°, '23.132.96.222°, “2400:chb00:386:1024:0:0:ac46:6dad’, ..]
internet.nl ['145.102.6.55", '146.70.88.198', '157.245.154.205°, .]
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Resolver representations (1/4)

145.102.6.91 (Openlintel) -
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Resolver representations (2/4)

145.102.6.91 (Openlintel) -

145.102.6.129 (Openintel) 1
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Resolver representations (3/4)

145.102.6.91 (Openlintel) -

145.102.6.129 (Openintel) 1

149.210.129.73 (Domeinwinkel.nl) 1
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Resolver representations (4/4)

145.102.6.91 (Openlintel) -

145.102.6.129 (Openintel) 1

149.210.129.73 (Domeinwinkel.nl) 1

94.198.154.28 (app-dmap21-p.sidn.nl) -

172.71.93.82 (Cloudflare.com)
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Project goal

How to generate meaningful representations of DNS concepts\
query data using representation learning techniques?

Can we use the learned representations in downstream machine
learning tasks, for example, clustering and classification?




Use case:

>>> model.wv.

[
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Find more ISP resolvers

most _similar(positive=['2a02:a4/f:e000:117:0:0:0:216",

e000:
e000:
e000:
e000:
e000:

115:
115:
117:
115:
117:

© © ©o o o
© © ©o o o
© © ©o o o

:184"
;188"
1196
:132°
1200

© © ©o o o

'2a02:a47f:e000:115:0:0:0:136",
'2a02:3471:e000:109:0:0:0:108"'])
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Use case: classify public open resolvers

Classify public resolvers

CloudFlare
Google

Not public

True label

OpenDNS

Quad9

CloudFlare Google Not public  OpenDNS Quad9
Predicted label
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Use case: cluster Google’s resolvers

Clustering Google resolvers
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Project goal

How to generate meaning £ = NS concepts
query data using represel . “EI,‘J.Y NIcE £ 2 ues?

Can we use the learned re Gn T
learning tasks, for example, clustering an d classification?




But... What is the next step?

« Can we extend the representations with additional metadata?
« Can we learn representations for domain names?

« Can we gain new insights with the learned representations?

« Can we use the representations to improve our ML projects?

« Can we inspire others to explore the possibility of representation learning?



Are there any questions?
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Follow us
£l) SIDN.nl

Thank you for your attention!




