Are NTP clients always right?

Evaluating NTP clients under normal and attack scenarios

Technical Report SIDN Labs 2025-10-16

Shreyas Konjerla
TU Delft
Delft, The Netherlands
s.konjerla@student.tudelft.nl

Georgios Smaragdakis
TU Delft
Delft, The Netherlands
G.Smaragdakis@tudelft.nl

Abstract

The Network Time Protocol (NTP) is the Internet’s default
time synchronization protocol. While the protocol itself and
attacks against NTP servers have been well-studied, there is
a lack of understanding on how NTP clients behave under
normal operation and under attacks. Considering their im-
portance — they are the ones who decide to update client’s
clock or not — this paper focus on evaluating the behavior
of eight 8 NTP clients, including the default client’s used by
the most popular OSes (Windows, Ubuntu and MacOS). We
find that the the default client’s of all OSes are vulnerable
to time shift attacks, which is particularly concerning given
they are used by billions of devices daily. In total, we find
nine issues and bugs with clients and notify vendors. We
find a large variation in client behavior, and worked with
Ubuntu operators to measure traffic growth on their switch
to Chrony from timesyncd.

1 Introduction

Clock synchronization is critical for the correct operations
of billions of digital devices and services. On the Internet,
TLS [10], DNS caches [28], RPKI [4], Kerberos [30], and
DNSSEC signatures [3] are examples of applications that
depend on clock synchronization to prove cryptographic
freshness [8, 16, 25, 39].

CPU clocks drift over time, as their internal oscillators
gradually diverge from a reference clock due to tempera-
ture fluctuations, manufacturing tolerances, and power vari-
ations [20]. To prevent the accumulation of time difference
caused by this drift, clients use time synchronization pro-
tocols to query periodically time servers for updated time
information, ensuring alignment with a reference time.

The Network Time Protocol (NTP) [25] is the Internet’s
default protocol for clock synchronization. It is designed

Giovane C. M. Moura
SIDN Labs and TU Delft
Arnhem and Delft, The Netherlands
giovane.moura@tudelft.nl

Tamme Dittrich
Tweede Golf
Nijmegen, The Netherlands
tamme@tweedegolf.com

to mitigate the effects of network jitter between client and
server while providing accuracy of tenths of milliseconds’.

NTP servers synchronize their clocks with out-of-band
high precision references, such as atomic clocks, radio sig-
nals, and global navigation satellite system (GNSS, as GPS
and Galileo), or other NTP servers. A client, in turn, syn-
chronize its local clock by (i) querying NTP servers — which
provide timestamps that allow them compute the offset be-
tween its own clock and the NTP server’s clock — and (ii)
then adjusting its system clock by the calculated offset value,
provided that the NTP servers are deemed trustworthy.

Protocols: NTPv4 [25] is the latest version of the protocol.
It specifies not only the on-the-wire protocol used, but also
client-side algorithms (server selection, timestamps filtering,
clock discipline), multiple operational modes (client, server,
symmetric active, symmetric passive, broadcast, control, and
private) and symmetric cryptographic authentication.

Many applications and devices (such as IoT) do not need
all features supported by NTPv4. The Simple Network Time
Protocol (SNTP) [24] was introduced for such cases. It is
a subset of NTPv4, which uses the same protocol format,
hence compatible with a NTP server. The Network Time
Security (NTS)[11] was later proposed as an extension to
NTPv4, and it uses Transport Layer Security (TLS) [38] to
provide authentication and integrity to NTP.

Clients: there is a large variety of NTP and SNTP clients.
Currently, all three major OSes (Windows, macOS, and
Ubuntu Linux) rely (Sept. 2025) on SNTP-based clients. Given
client’s role in clock synchronization — they make the ulti-
mate decision whether to trust time provided by NTP servers
and to updated the system’s clock - it is essential to evaluate
how modern clients behave and if they are vulnerable to
attacks.

! Applications requiring micro-second accuracy can use the Precision Time
Protocol (PTP) [13], which is mostly used in layer 2 and not on the Internet.

https://orcid.org/0009-0008-5139-1896
https://orcid.org/0000-0002-6632-0221
https://orcid.org/0000-0002-4127-3617
https://orcid.org/0009-0001-4861-7400

Shreyas Konjerla, Giovane C. M. Moura, Georgios Smaragdakis, and Tamme Dittrich

Client (version) User base (O Release
macOS (15.4.1) 2.2B* [1] macOS Sept 2024
W32Time [22] 1.4B [21] Windows April 2025
timesyncd (255.4) [2] - Ubuntu Sept 2024
NTPSec (1.2.2) [32] - Ubuntu Nov 2024
NTPD-RS (1.1.2) [31] - Ubuntu Jan 2025
ntpd (4.2.8p18) [29] - Ubuntu June 2023
OpenNTPd (1:6.2p3-4.2) [12] - Ubuntu Oct 2022
Chrony (4.5) [35] - Ubuntu Oct 2024
Table 1: Evaluated NTP/SNTP clients. Clients

highlighted are their OSes’ defaults and SNTP-based.
(*2.2B devices running MacOS and iOS combined).

Currently, there is no comprehensive evaluation of the
behavior of modern and popular S/NTP clients under both
normal operations and attacks. A previous work [15] carried
out man-in-the-middle (MITM) attacks against 4 NTP clients,
but it did not include the clients default to the three major
OSes (used by billion devices daily), and and neither used
attack models that did not require MITM.

To fill this void, we scrutinize the behavior of eight popular
NTP and SNTP clients (Table 1) covering macOS, Linux (Ubuntu,
a systemd-based [44] OS) and Windows Server (2025.02.13).
We evaluate eight clients in total: these OSes’ default clients —
given they are used by billions of devices daily — and five oth-
ers, namely: ntpd (NTPv4 reference implementation), NTPSec
(ntpd fork with NTS support), Chrony (default on Ubuntu
releases from Oct. 2025 that supports NTS) [18]), OpenNTPd
(OpenBSD’s project NTP implementation), and NTPD-RS, a
rust-based client with N'TS support.

We configure these clients and observer their behavior
under normal operations (§2) and under well-known attacks
that aim to change drastically client’s clock (time shift at-
tacks) or prevent clients from synchronizing, leading to clock
drifts (§3). We analyze the results of these experiments and
make the following contributions:

e We demonstrate that all major OSes’ default clients are
vulnerable to time shift attacks (§3), affecting billions of
clients globally. For mac0S and timesyncd (Ubuntu’s de-
fault), we cause a two-year jump in time with 2h and
13min, respectively. Windows took 36h.

e We identify ten issues and bugs with existing software and
perform coordinated vulnerability disclosure (CVD) [27]
to vendors (§4), and one of the issues has been patch as of
the writing of this paper.

o We identify large variation among clients under normal
operations (§2), in terms of query volume and server usage.

e We disclose our findings to Ubuntu operators and work
with them to estimate traffic increase due to their sched-
uled switch from timesyncd to Chrony in their Oct. 25
release. We determine a 10X more queries and 25X more

traffic volume (§2.4). These findings helped Ubuntu’s net-
work operators make informed decisions about their ser-
vice dimensioning,.

2 Client’s Baseline Behavior

Next we evaluate NTP/SNTP clients shown in Table 1 under
normal operations.

2.1 Expected behavior

SNTP protocol is designed for devices that need lower ac-
curacy than NTP clients. SNTP RFCs does not specify how
often a client should query NTP servers, but they do stipulate
limits: a client must not be sent new NTP queries at intervals
shorter than 15 s (§10 in [40]) and should wait at least 1 min
between queries (§5 in [24]). Clients are expected to use only
one NTP server if configured with multiple ones (§7 in [40]).

NTP clients, in turn, are tailored for systems that require
higher precision and behave differently. NTP clients have to
wait 16 s between successive queries and to use exponential
back-off to increase the interval between queries if NTP
servers are stable (§5 in [25]). At starting conditions, however,
NTP clients can be configured in burst mode, allowing them
to send multiple queries to speed up its first clock update —
chrony, for instance, will send 4 queries spaced 2 seconds
or less [5]. Moreover, NTP clients are expected to query all
NTP servers they are configured (§5 in [25] and §3.2 in [37]).

2.2 Experimental setup

NTP servers: Our experimental setup consists of a single
physical computer (macOS) - except for Windows client
case (W32Time). In this setup, we configure three Ubuntu
VMs (24.04.3 LTS) using Multipass [45] to serve as our NTP
servers, which run Chrony. We synchronize these three NTP
server with external sources — Apple and Ubuntu NTP servers
asreference NTP servers (time.apple.comand ntp.ubuntu. com).

Clients: we configure a VM for each client from Table 1 -
Ubuntu VMs using Multipass and mac0S VM using UTM [47].
It is important to note that these VMs maintain their own
clocks independently of the host operating system’s clock.

We then configure these client VMs to use our previously
configured NTP servers . Given that both NTP servers and
client VMs run on the same physical machine, network delay
and jitter are minimal. We capture traffic in all experiments.
We run each experiment for over 60h, which we except to
be more than enough to capture the clients behaviors.

Windows : For Windows Server client, we run it on AWS
EC2 instance (Stockholm) and set up 3 VMs as NTP servers
(just as in our local setup with Chrony), and configured Win-
dows to query these NTP servers.

Are NTP clients always right?

Queries Per Server Per Server
Client Total Avg/h S1 S2 S3 | Poll Rate (avg)
Chrony 4,822 80.37 | 1,643 1,498 1,681 7.02
macOS 309 5.15| 102 101 106 11.6
ntpd 739 1232 246 246 246 9.41
NTPD-RS 15,050 250.8 | 5,012 5,012 5,026 5.39
OpenNTPd 1,361 22.68 | 425 473 463 8.85
NTPSec 1,009 16.82| 336 336 337 9.29
W32Time 213 3.55 80 77 56 10.1
timesyncd 108 1.77 | 108 0 0 10.9

Table 2: Queries sent by each client in 60 hours in nor-
mal operation. highlighted are SNTP clients.

2.3 Results

We summarize the traffic captured for each client in Table 2.
For each client, we show the total number of NTP queries,
average number per hour, and total queries per NTP server .
Considering that all the clients have the same ideal network
conditions (except for Windows), it is striking to find such
large variation in number of queries per hour.

2.3.1 SNTP clients: we see in Table 2 that SNTP send the
lowest number of queries, confirming to the expected behav-
ior (§2.1). timesyncd is the only one who adhere to SNTP
specifications, querying only one NTP server (§2.1) out of
the three. W32Time and macOS query all three servers, which
is not expected from SNTP clients (§2.1), and therefore are
not dependent on a single time source. All SNTP clients have
an average polling interval of roughy 10 (~17min).

2.3.2 NTPclients: NTP clients exhibit a large variation, rang-
ing from 12 to 250 queries per hour (Table 2), being ntpd, the
reference implementation, the lowest, whereas NTPD-RS the
highest. To investigate these differences, we show in Figure 1
the scatter plots of queries sent by clients. On the x-axis, we
show the time, while on the y-axis we show the polling rate,
which shows how often a client queries a time server. A
polling rate of n = 10 means the client sends a query every
210 = 1024 s - a value known as polling interval, denoted by
T, and is computed as T = 2".

Reference implementation: we see in Figure 1 that ntpd
polls more aggressively in the beginning and then reducing
the rate over time exponentially, until it reaches a polling
rate of 16 (18 h polling interval). This value within the stan-
daridzed bound - maximum polling rate being 17 (§2.1).

Troubleshooting NTPD-RS: NTPD-RS, in turn, never has a
polling interval larger than 256 s (rate=8). It’s documentation
stipulates that its poll interval is [16,1024] s (max rate 10) [31]
and that it has no burst mode, but in our experiment we do
not see this behavior. The NTPD-RS documentation states
that it has “back-offs that kick in case in case of failures” [36]
when polling NTP servers. To rule out packet loss and retrial,

NTPD 4.2.8p18

16
a3 e
@ |2 .. -
& 10 —_
23 -
=6 -
o 4 -
a 5 r [« Server: 1 Server: 2 = Server: 3]
0
NTPD-RS
16
w14 [Server: 1 Server: 2 = Server: 3]
512
=10
£ . —
S0 Sae I e
L4 == ——— == = - ———
2
0
NTPSec
16
g 14) ¢ Server: 1 Server: 2 = Server: 3
512
10 — J—
2y = -
= 6] =
& 4
2
0
OpenNTPD
16
8 14) < Server: 1 Server: 2 = Server: 3
2
s e e
'y e . em L s
S0 - . LR |] .
o '
2
0
macOS
3
g1
=10
£
56
o j Server: 1 Server: 2 = Server: 3
0
Chrony
16
w14 < Server: 1 Server: 2 = Server: 3
512
10 s — e P — s
qu (8 - - oo man cum amn e ine s e s o
R - Siormniie s =T Ly TR e
& 4
2
0
TimesyncD
16
512
=10
28
St
2
0
Windows
2 Server: 1 Server: 2 = Server: 3
5
1) [—— —_— SR— .
=g
£
5
a
0 0:00:00 13:53:20 1 day, 3:46:40 1 day, 17:40:00 2 days, 7:33:20

Duration

Figure 1: NTP queries per client. Polling interval com-
puted from consecutive queries to the same server.

we analyze the traces and found no packet losses or delayed
responses (RTT 90%ile 2.6ms).

We then contacted the NTPD-RS developers, who con-
firmed our findings as as intended behavior, where the if
NTPD-RS prioritize accuracy over network load for nearby
servers. We verify those claims in Appendix A.

Shreyas Konjerla, Giovane C. M. Moura, Georgios Smaragdakis, and Tamme Dittrich

AMS VM SYD VM
queries’h bytes/h | queries/h bytes/h
timesyncd 1.83 201.3 1.83 201.3
Chrony 21.24 5213.10 20.38 5043.11
Ratio 11.6 25.1 11.1 25.05

Table 3: Ubuntu outgoing traffic compared (60h)

2.3.3 Server usage: we have seen in Table 2 that all clients,
except for timesyncd, use the three available NTP servers
they have been set up. While all NTP clients send queries to
all three NTP servers simultaneously, we found that mac0S
and W32Time do not: macOS sends to two at each time, and
W32Time to one at a time, as can see in Figure 1. We include
in Appendix A figures showing shorter time intervals where
this behavior is clear.

Windows versions: besides Windows server, we cover in
Appendix B how Windows home behave, and how Windows
Pro/Server Client behaves if part of a active directory domain-
controller (it uses many-cast mode [24]).

2.4 Ubuntu switch to Chrony

Ubuntu is scheduled to replace its SNTP client (timesyncd)
with Chrony in Oct. 2025 [18], with NTS enabled by default
on all images. As shown in Table 2, Chrony issues signifi-
cantly more queries than timesyncd. Since Ubuntu operates
its own time service network, we disclosed our findings to
Ubuntu developers in Sept. 2025 and raised concerns about
a potential traffic surge they will observe due to this change.

To estimate a more precise traffic increase, we reproduced
Ubuntu’s future setup and captured 60 h of traffic from two
VMs in different data centers (AMS and SYD). We then re-
peated the experiment using timesyncd under identical con-
ditions and compare traffic from both experiments.

Table 3 summarizes the results. We see an 11X increase
in query counts and a 25X increase in traffic volume per
hour, when switching to Chrony (Table 3) - NTS queries and
responses are larger due the use of extension fields [11].

We shared these results helped Ubuntu’s operators, which
helped them to make informed choices about the required
capacity of their time service network. We cover these ex-
periments in detail in Appendix C.

3 Attacking Clients

Next, we evaluate attacks targeting S/NTP clients. Specifi-
cally, we demonstrate two classes of misbehavior: (i) time-
shift attacks (§3.1) and Kiss-o’-Death (KoD) attacks (§3.2).

3.1 Time shifting attacks

Time shifting attacks consists of an attacker deliberately ma-
nipulating time responses to shift a client’s system clock.

They can disrupt operations and cause issues on a large scale.
For instance, in November 2011, the US Navy Naval Observa-
tory’s (USNO) NTP servers [33] had an incident where they
reported wrong time information (12 years incorrect), result-
ing in outages in multiple places, including Active Directory
servers and and routers [16, 19]. Even though it was not an
intentional time shift attack, it behaved like one.

Expected client behavior: To prevent such attacks, NTPv4
specifies a “panic mode”, in which clients should not update
their clocks if the offset is larger than 1000s [25]. Moreover,
NTPv4 also states that clients should compare responses
from multiples servers before stepping their clock. SNTP
clients are not expected to have such protections, which may
explain the reported outages on Windows systems in the
USNO event, given it uses a SNTP based client.

3.1.1 Threat model: we assume the goal of the attacker is
shift a target systems clock. In our threat model, the attack
controls malicious NTP servers. We do not use in or out-
of-path attack models; rather, we assume that clients are
redirected to the the attackers’ services. This can be done
in multiple ways. First, using the NTP Pool [34], which is
a volunteer-based time service provider consisting of 4k
NTP servers, and a very popular service [26]. There is a
known vulnerability in which an attacker can take over all
NTP queries to the NTP pool for entire countries (or parts
of) [26]. It requires adding malicious servers to the NTP Pool
and evading their monitoring system [14]. In this way, an
attacker can server a large population of clients with wrong
time information, evading NTP Pool bad servers detection.

A second way to redirect clients is by using DNS - either
by carrying out cache poisoning or compromising a DNS
resolver. For instance, it can forward all macOS default time
servers (time.apple.com) to IP addresses of NTP servers un-
der the attackers’ control. Once the NTP client is served by
the attacker NTP servers, the attack can start.

3.1.2 Experiments: For ethical reasons, we refrain from per-
forming these previously demonstrated attacks (NTP Pool
or compromising public DNS servers) and start from the
point where the clients are already redirected to the attack-
ers’ servers, given our goal is to determine if clients are able
to fend-off such attacks.

We configure all clients to use a domain name that pointed
to three NTP servers under our control. We allow the clients
initially to have a hot-start, meaning that they retrieve correct
time information after booting. After this initial phase, we
start the time shift attacks, by responding queries with wrong
time information from all three servers We run 6 experiments
for each client, in which we use different offsets (how long
we want clocks to be shifted), from 900 s (under the “panic
threshold” [25]) to two years, using the same setup from
§2. We run the experiments for at least eight hours and

Are NTP clients always right?

Offset

Client 900s | 1M | 2M | 3M | 1Y | 2Y
mac0S v v v v v |/
W32Time v
timesyncd v v v v v |/
NTPSec
NTPD-RS
ntpd
OpenNTPd
Chrony

Table 4: Client behavior to time shift attacks.
(v') shows vulnerable clients. (M = month, Y = Year).

and observe the client’s handling of the responses and the
system’s clocks.

3.1.3 Results: Table 4 summarizes the results. We see that
none of the NTP clients were vulnerable to time shift attacks,
regardless the offset used in the attack.

However, we found that all SNTP clients are vulnerable.
Even though they conform to the SNTP standards, these are
the default clients in the three major OSes and given their
billions of users (Table 1), it makes them very problematic
given the impact they may cause.

We managed to timeshift the clocks of mac0OS and Ubuntu’s
timesyncd (which is also used in several other Linux distros)
by all the offsets we tried. Window’s W32Time client, however,
could not be time shifted for more than 900s. Windows server
documentation states that it has a two-week panic mode
value, meaning it accepts ofssets up to 2 weeks but not more
than that [22]. Still, it may be vulnerable to time skimming
attacks [16], where it can be time shifted by multiple times
over longer periods.

How long does it take? We were surprised to see how fast
we could succeed inour attacks: 13 minutes for Ubuntu’s
timesyncd, and 2 hours for macOS (8 and 13 queries, respec-
tively). We show the time series of queries in Figure 2a.

Windows’ W32Time client too longer. We ran an additional
experiment using a offset of a week, and it took 136 queries
over 36 hours for the attack to succeed (Figure 2b).

CVD: We followed coordinate vulnerable disclosure (CVD)
guidelines [27] and disclosed our findings to Apple in March
2025 (issue # OE1100520849262). We even reproduced the
attack with DNS hijacks (Appendix D). They concluded that
this was not a vulnerability and did not fix it, which there-
fore keeps their users vulnerable to such attacks. We no-
tified also both timesyncd (systemd) and Debian[7] devel-
opers (2025-09-25), considering that Debian is particularly
vulnerable given it uses both timesyncd and the NTP Pool.
timesyncd developers responded saying that there is “work-
ing in progress to add NTS support to timesyncd” [43],
which partially fix the issues (a client can be configured

to use a bad NTS timekeeper still). We are stil waiting for
Debian’s response.

timesyncd{
macOS Time Shift Attack
e macOS
timesyncd
macOS{ e o o o o . .
0:00:00 0:33:20 1:06:40 1:40:00 2:13:20 2:46:40
Duration

(a) timesyncd and macOS (2 years offset)

Time Shift Attacl

SRR

Windows

0:00:00 6-_56'A0 13-_53120 20:50:001 days 3-_4616%3\!' l()-_l\3122(?ayl 1’{-_40300

Duration

(b) Windows (1 week offset)

Figure 2: Time series of NTP queries for each client.
Dashed lines show when the attacked succeed.

Other findings: we found out that NTPD-RS would crash
roughly after 30min into the experiment, when its calculated
offset is greater than its panic threshold. We disclosed the
issue to the developers and yet to hear back from them.

Takeway: the default time clients of the three major OSes
are vulnerable to time shift attacks, making billion of devices.
Ubuntu’s switch to Chrony in Oct. 2025 will eliminate this
issue, whereas Microsoft and Apple still need to fix it.

3.2 Kiss-o’-Death (KoD) attacks

The NTP protocol provides KoD packets as a rate-limiting
mechanism for servers to tell clients to reduce their query
rates. While the conception was well intended, it has been
proved to be a dangerous attack vector in multiple attacks:
spoofed KoD packets can cause clients to stop synchronize
their clocks, which will cause their clocks do drift [16, 37],
and can be exploited in DDoS attacks.

Expected behavior: RFC8633 [37] (§5.4) recommends (but
does not mandate) clients to back-off when receiving KoD
RATE packets, which signals that clients should reduce their
query rate (thus increasing polling interval, but never beyond
13), and states that many clients do not respect them. NTPv4
RFC states that clients should stop using the server after
receiving a KoD DENY packet (§7.4).

Threat model : we set out to determine if we could prevent
clients from stop synchronization by sending KoD packets,
which can lead to clock drifts. We use the same threat model
as in §3.1 — except we now instead of sending wrong time

Shreyas Konjerla, Giovane C. M. Moura, Georgios Smaragdakis, and Tamme Dittrich

RATE DENY
NTPSec Ignored Ignored
NTPD-RS Increased query rate = Too many queries (bug fixed)
ntpd Stopped Too many queries
OpenNTPd Ignored Ignored
Chrony Ignored Ignored

Table 5: Summary of Kiss of Death results.

+ REF RATE * DENY

g
5
& 10
& JrevIrey
£ o, :
s . P N H
S5 - - H
ama aa a H
{ 0:00:00 1:23:20 2:46:40 4:10:00 5:33:20 6:56:40 8:20:00
Duration
(a) NTPD-RS
15 REF RATE DENY] 3
2 :
] AM A4 a4
& 10 s b
= pr——
&5 o
(0:00:00 1:23:20 2:46:40 4:10:00 5:33:20 6:56:40 8:20:00
Duration
(b) ntpd

Figure 3: Client behavior under KoD attacks.

information, we send KoD packets after a hot start — where
clients receive legitimate responses.

Experiments: We carry out two experiments, using RATE
and DENY KoD packets. It is important to note that we
did not test SNTP clients since they are not expected to
implement KoD handling [24] and it does not specify any
such mechanism .

Results: Table 5 summarizes the results. We see that most
clients NTPSec, OpenNTPd and Chrony simply ignored these
packets, which shows developers own choices deviating for
standards to prevent attacks. (Timeseries in Appendix A).

NTPD-RS bug: we found that NTPD-RS instead of either ig-
noring DENY packets (if choosing to distrust its authenticity)
or stopping using the server, it does actually hammers the
servers. In a period of 5 minutes, it sent 541613 packets (1800
qps)- In Figure 3a, note that we show only the first 5min of
KoD DENY experiment, which we stopped after it. (We show
the scatter plot of queries in Appendix A). We reported the
issues to the NTPD-RS developers on GitHub [41] and they
acknowledged and fixed the issue.

ntpd: being the reference implementation, we had ex-
pected ntpd to conform to the standards. However, that is
not what we observed. We see that it does not stop using the
NTP servers if it receives a KoD deny packet. We show in
Figure 3b the time series of queries for a baseline reference

(REF) and the KoD experiments. We see how DENY, ntpd
kept on using a polling interval of 6 for more than two hours,
constantly, and later had a in increase. For KoD RATE, it
simply ignored an kept querying with a constant polling
interval of 3 (8s).

We contacted the ntpd developers and they have acknowl-
edged the issue. They said that ntpd only “test for the in-
coming RATE code”. So in this case, it is a deliberate choice
that helps ntpd to avoid clock drifts by avoiding stopping
contacting the server.

Takeaway: we found that the NTP clients will not accept
KoD packets and stop querying NTP servers — therefore
they are not vulnerable to KoD attacks in our threat model.

4 Discussion and recommendations

We have identified in total 11 issues with current S/NTP
clients and notified vendors and opeators (we summarize it
in a table on Appendix E). We discuss the ethics of this paper
in Appendix F.

Our results shows how the three major OSes (Windows,
MacOS and Ubuntu/Linux) rely on SNTP clients that are
vulnerable to time shift attacks. We commend that both Mi-
crosoft and Apple deploy robust NTP clients in their systems,
with NTS support, to mitigate the risk of time shift attacks,
just as Ubuntu is planning for Oct. 2025.

We also recommend SNTP software developers to make
their software more robust against time shift attacks. For in-
stance, by validating the responses received in case of odd off-
sets. For instance, OpenNTPd has feature called “constraints”,
which allows it to “query ‘Date’ from trusted HTTPS servers
via TLS” [46], and verify if the reported timestamp on NTP
responses are within reasonable bounds.

Lastly, we recommend that every systemd-based Linux dis-
tribution should reconsider using timesyncd as it currenlty
is, and switch to more robust alternatives.

5 Related Work

Client security: The closest work to ours is by Malhous [15],
where they peform time-shift attacks on NTP clients (Chrony,
ntpd, OpenNTPd, and NTPSec). Differently from us, they per-
form MITM attacks, whereas our threat model for attacks
start from clients being already served by the malicious
server (§3.1). They suceeded in changing clocks by multiple
of 1000s, whereas we succeded in changing years. We evalu-
ate 8 clients — and 3 being default clients in the most popular
OSes, under normal behavior, time shift attacks using multi-
ple offsets, and under KoD packets.

NTP security: NTPv4 has known security issues; it can be
exploited in DDoS amplification attacks [6]. NTS was later
proposed as an extension to NTPv4, and it protect against

Are NTP clients always right?

man-in-the-middle attacks, but not against attacks that in-
clude DNS hijacking as in our threat model (NTP Pool cur-
rently does not support NTS.)

Attacks against NTP. Malhotra et al. [17] exposed how
unauthenticated NTP traffic enables a range of attacks, in-
cluding time-shift and Denial-of-Service (DoS) attacks. They
show how clients are vulnerable during initialization and can
be manipulated via spoofed or fragmented packets. Whereas
their work evaluate only ntpd, we evaluate 8 different NTP/S-
NTP clients, but against three attacks. While many of the spe-
cific vulnerabilities identified have since been addressed [37],
time-shift attacks remain a persistent risk, particularly due
to clients’ acceptance of large time changes at startup.

6 Conclusion

NTP lurks in the background of modern computer systems
playing a key role in its well functioning. We have evaluated
8 S/NTP clients and showed that there several good options
and yet, the three most popular modern OSes still rely SNTP
clients that are vulnerable to time shift attacks, creating
unecessary risks for its billion of daily users. We hope our
results encourage Microsoft, Apple and timesyncd folks to
improve their software against time shift attacks.

References

[1] Apple Inc. 2024. Apple Reports First Quarter Results.
https://www.apple.com/newsroom/2024/02/apple-reports-first-
quarter-results/. Accessed: 2025-02-18.

[2] Arch Linux. 2024. systemd-timesyncd. https://wiki.archlinux.org/title/
Systemd-timesyncd Accessed: 2025-05-15.

[3] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose.
2005. DNS Security Introduction and Requirements. RFC 4033. IETF.
http://tools.ietf.org/rfc/rfc4033.txt

[4] Randy Bush and Rob Austein. 2013. The Resource Public Key Infras-
tructure (RPKI) to Router Protocol. RFC 6810. IETF. http://tools.ietf.
org/rfc/rfc6810.txt

[5] Chrony Project. 2025. chrony.conf - chronyd configuration file. https:
//chrony-project.org/doc/3.4/chrony.conf.html Accessed: 2025-05-13.

[6] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopou-
los, Michael Bailey, and Manish Karir. 2014. Taming the 800 Pound
Gorilla: The Rise and Decline of NTP DDoS Attacks. In Proceedings of
the 2014 ACM Conference on Internet Measurement Conference (Van-
couver, BC, Canada) (IMC). ACM, 435-448. https://doi.org/10.1145/
2663716.2663717

[7] Debian Project. 2025. Debian — The Universal Operating System. https:
//www.debian.org/ Accessed: 2025-09-25.

[8] Omer Deutsch, Neta Rozen Schiff, Danny Dolev, and Michael Schapira.
2018. Preventing (Network) Time Travel with Chronos. In Network
and Distributed Systems Security (NDSS) Symposium 2018. San Diego,
CA, USA. https://doi.org/10.14722/ndss.2018.23231

[9] Ubuntu Developers. 2025. chrony (version 4.7-1ubuntul) — Ubuntu
package in questing. https://packages.ubuntu.com/questing/chrony
Accessed: 2025-09-17.

[10] Tim Dierks and Eric Rescorla. 2008. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246.IETF. http://tools.ietf.org/rfc/rfc5246.txt
Daniel Franke, Dieter Sibold, Kristof Teichel, Marcus Dansarie, and
Ragnar Sundblad. 2020. Network Time Security for the Network Time

[11

—

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

Protocol. RFC 8915. IETF. http://tools.ietf.org/rfc/rfc8915.txt
Henning Brauer. 2022. OpenNTPd. https://www.openntpd.org Ac-
cessed: 2025-05-13.

IEEE. 2002. IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems. IEEE Std.
1588-2002 (2002). https://standards.iece.org/ieee/1588/3140/
Jonghoon Kwon, Jeonggyu Song, Junbeom Hur, and Adrian Perrig.
2023. Did the Shark Eat the Watchdog in the NTP Pool? Deceiv-
ing the NTP Pool’s Monitoring System. In 30th USENIX Security
Symposium. https://www.usenix.org/conference/usenixsecurity23/
presentation/kwon

Ahmed R. Mahlous. 2024. Quantitative Risk Analysis of Network
Time Protocol (NTP) Spoofing Attacks. IEEE Access 12 (2024), 164891—
164910. https://doi.org/10.1109/ACCESS.2024.3493759

Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg.
2016. Attacking the Network Time Protocol. In Proceedings of the 23rd
Network and Distributed System Security Symposium (NDSS 2016) (San
Diego, California).

Aanchal Malhotra and Sharon Goldberg. 2016. Attacking NTP’s Au-
thenticated Broadcast Mode. SIGCOMM Comput. Commun. Rev. 46, 2
(may 2016), 12-17.

Lukas Mérdian. 2025. PSA: Installing chrony by default, to enable
Network Time Security (NTS). Ubuntu-devel mailing list. https://lists.
ubuntu.com/archives/ubuntu-devel/2025-May/043355.html Message
posted on May 22, 2025.

Mark Morowczynski. 2012. Did Your Active Directory Domain
Time Just Jump To The Year 2000? https://techcommunity.microsoft.
com/t5/core-infrastructure-and-security/did-your-active-directory-
domain-time-just-jump-to-the-year-2000/ba-p/255873.

Hicham Marouani and Michel R. Dagenais. 2008. Internal Clock Drift
Estimation in Computer Clusters. Journal of Computer Networks and
Communications 2008, 1 (2008), 583162. https://doi.org/10.1155/2008/
583162

Microsoft. 2022. Windows Devices by the Numbers.
https://web.archive.org/web/20220419050729/https://news.microsoft.
com/bythenumbers/en/windowsdevices. Accessed: 2025-02-18.
Microsoft Corporation. 2024-04-23. [MS-SNTP]: Network Time Proto-
col (NTP) Authentication Extensions. (2024-04-23).

Microsoft Corporation. 2024-04-23. [MS-W32T]: W32Time Remote
Protocol. (2024-04-23).

David Mills. 2006. Simple Network Time Protocol (SNTP) Version 4 for
IPv4, IPv6 and OSIL. RFC 4330. IETF. http://tools.ietf.org/rfc/rfc4330.txt
David Mills, Jim Martin, Jack Burbank, and William Kasch. 2010. Net-
work Time Protocol Version 4: Protocol and Algorithms Specification.
RFC 5905. IETF. http://tools.ietf.org/rfc/rfc5905.txt

Giovane C. M. Moura, Marco Davids, Caspar Schutijser, Cristian Hes-
selman, John Heidemann, and Georgios Smaragdakis. 2024. Deep Dive
into NTP Pool’s Popularity and Mapping. 8, 1, Article 15 (feb 2024),
30 pages. https://doi.org/10.1145/3639041

Giovane C. M. Moura and John Heidemann. 2023. Vulnerability Dis-
closure Considered Stressful. SSGCOMM Comput. Commun. Rev. 53, 2
(April 2023), 2-10. https://doi.org/10.1145/3610381.3610383
Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and
Wes Hardaker. 2019. Cache Me If You Can: Effects of DNS Time-
to-Live. In Proceedings of the ACM Internet Measurement Conference.
ACM, Amsterdam, the Netherlands, 101-115. https://doi.org/10.1145/
3355369.3355568

Network Time Foundation. 2025. NTPD 4.2.8p-series. https://www.
ntp.org/documentation/4.2.8-series/#building-and-installing-ntp Ac-
cessed: 2025-05-13.

Clifford Neuman, Tom Yu, Sam Hartman, and Kenneth Raeburn. 2005.
The Kerberos Network Authentication Service (V5). RFC 4120. IETF.

https://www.apple.com/newsroom/2024/02/apple-reports-first-quarter-results/
https://www.apple.com/newsroom/2024/02/apple-reports-first-quarter-results/
https://wiki.archlinux.org/title/Systemd-timesyncd
https://wiki.archlinux.org/title/Systemd-timesyncd
http://tools.ietf.org/rfc/rfc4033.txt
http://tools.ietf.org/rfc/rfc6810.txt
http://tools.ietf.org/rfc/rfc6810.txt
https://chrony-project.org/doc/3.4/chrony.conf.html
https://chrony-project.org/doc/3.4/chrony.conf.html
https://doi.org/10.1145/2663716.2663717
https://doi.org/10.1145/2663716.2663717
https://www.debian.org/
https://www.debian.org/
https://doi.org/10.14722/ndss.2018.23231
https://packages.ubuntu.com/questing/chrony
http://tools.ietf.org/rfc/rfc5246.txt
http://tools.ietf.org/rfc/rfc8915.txt
https://www.openntpd.org
https://standards.ieee.org/ieee/1588/3140/
https://www.usenix.org/conference/usenixsecurity23/presentation/kwon
https://www.usenix.org/conference/usenixsecurity23/presentation/kwon
https://doi.org/10.1109/ACCESS.2024.3493759
https://lists.ubuntu.com/archives/ubuntu-devel/2025-May/043355.html
https://lists.ubuntu.com/archives/ubuntu-devel/2025-May/043355.html
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/did-your-active-directory-domain-time-just-jump-to-the-year-2000/ba-p/255873
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/did-your-active-directory-domain-time-just-jump-to-the-year-2000/ba-p/255873
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/did-your-active-directory-domain-time-just-jump-to-the-year-2000/ba-p/255873
https://doi.org/10.1155/2008/583162
https://doi.org/10.1155/2008/583162
https://web.archive.org/web/20220419050729/https://news.microsoft.com/bythenumbers/en/windowsdevices
https://web.archive.org/web/20220419050729/https://news.microsoft.com/bythenumbers/en/windowsdevices
http://tools.ietf.org/rfc/rfc4330.txt
http://tools.ietf.org/rfc/rfc5905.txt
https://doi.org/10.1145/3639041
https://doi.org/10.1145/3610381.3610383
https://doi.org/10.1145/3355369.3355568
https://doi.org/10.1145/3355369.3355568
https://www.ntp.org/documentation/4.2.8-series/#building-and-installing-ntp
https://www.ntp.org/documentation/4.2.8-series/#building-and-installing-ntp

Shreyas Konjerla, Giovane C. M. Moura, Georgios Smaragdakis, and Tamme Dittrich

http://tools.ietf.org/rfc/rfc4120.txt

[31] ntpd-rs Project. 2025. ntp.toml - Configuration File for the ntpd-rs NTP
Daemon. https://docs.ntpd-rs.pendulum-project.org/man/ntp.toml.5/
Accessed: 2025-05-13.

[32] NTPsec project. 2022. NTPSec. https://www.ntpsec.org Accessed:
2025-05-13.

[33] United States Naval Observatory. 2022. Information about
NTP, the time backbone of the Internet. (Nov. 5 2022).
https://www.cnmoc.usff.navy.mil/Our-Commands/United- States-
Naval-Observatory/Precise- Time-Department/Network-Time-
Protocol-NTP/

[34] NTP Pool. 2025. pool.ntp.org: the internet cluster of ntp servers. https:
//www.ntppool.org/en/ Accessed: 2025-04-23.

[35] Chrony Project. 2025. Chrony: A Versatile Implementation of NTP.
https://chrony-project.org/ Accessed: 2025-04-23.

[36] Pendulum Project. 2025. Algorithm Documentation. https:
//github.com/pendulum-project/ntpd-rs/blob/main/docs/algorithm/
algorithm.pdf

[37] D. Reilly, H. Stenn, and D. Sibold. 2019. Network Time Protocol Best
Current Practices. RFC 8633. IETF. http://tools.ietf.org/rfc/rfc8633.txt

[38] E.Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. IETF. http://tools.ietf.org/rfc/rfc8446.txt

[39] Teemu Rytilahti, Dennis Tatang, Janosch Kopper, and Thorsten Holz.
2018. Masters of Time: An Overview of the NTP Ecosystem. In 2018
IEEE European Symposium on Security and Privacy (EuroS P). 122-136.
https://doi.org/10.1109/EuroSP.2018.00017

[40] S. Sakane, K. Kamada, M. Thomas, and J. Vilhuber. 2006. Kerberized
Internet Negotiation of Keys (KINK). RFC 4430. IETF. http://tools.ietf.
org/rfc/rfc4430.txt

[41] Shreyas Konjerla. 2025. KISS codes not ignored #1867. https://github.
com/pendulum-project/ntpd-rs/issues/1867 Accessed: 2025-05-14.

[42] Shreyas Konjerla. 2025. OpenNTPd not keeps track of the Era #77. https:
//github.com/openntpd-portable/openntpd-portable/issues/77 Ac-
cessed: 2025-05-16.

[43] squell. 2025. NTS support for systemd-timesyncd (Pull Request #39010).
https://github.com/systemd/systemd/pull/39010. Accessed: 2025-10-
16.

[44] systemd project. 2025. systemd - System and Service Manager. https:
//systemd.io/ Accessed: 2025-09-24.

[45] Canonical Multipass Team. 2025. canonical/multipass: Multipass or-
chestrates virtual Ubuntu instances. https://github.com/canonical/
multipass. Accessed: 2025-09-02.

[46] The OpenBSD Project. 2025. ntpd.conf(5) - OpenBSD Manual Pages.
OpenBSD. https://man.openbsd.org/ntpd.conf Accessed: 2025-09-19.

[47] LLC Turing Software. 2025. UTM: Virtual Machines for Mac. https:
//mac.getutm.app/ Accessed: 2025-08-27.

Appendix
A Extra figures

Figure 4a provides a timeseries of polling interval when we
use NTPD-RS against a server listed with the NTP Pool from
Japan. We do not observe a large volume of queries as in
Table 2.

This server had a polling interval of 3, therefore 8s. We run
it on 2025-05-24 from a VP located in Europe. We saw that
the NTPD-RS was not as aggressive as we saw in our local
experiments. This may suggest NTPD-RS is more conservative
when it is not in a local environment. This was confirmed

we o

00000 0:3320 1:06:40 14000 211320 246:40 3:20:00
RTT (HH:MM:SS)

(a) NTPD-RS time series from Japan

— s, A (Server 1 % Server2 4 Server3
goo tit i

] . $

& . N A“ B AA‘A%XXXAXX Xxx

zoo S DAt P e

0:00:00 0:00:50 0:01:40 0:02:30 0:03:20 0:04:10 0:05:00 0:05:50
Duration

(b) NTPD-RS DENY scatter plot

Figure 4: NTPD-RS query behavior: (a) time series from
Japan server, (b) scatter plot during KoD Deny bug.

when asked about to the developers. This is also mentioned
in §2.2.

Figure 4b shows the scatter plot of queries during the KoD
Deny bug of NTPD-RS.

In Figure 5 shows the server utilization patterns of differ-
ent clients. In these figures, a mark is a NTP request sent to
that specific server. Each of these clients was provided with 3
servers. Looking at this we can see how different clients used
their servers. ntpd is the reference point which uses all the
servers at all time sending request all of them. macOS uses
only 2 servers at a time and frequently switches between
them to balance the load. W32Time uses only one server at a
time and switches between them after long periods of time.
NTPD-RS is another client which uses all the servers at the
same time.

This again highlights the different design decisions made
by the developers of these clients and how they impact the
security of the clients. Clients which use multiple servers at
the same time are more resilient to attacks since they can
cross-verify the responses. Clients which use only one server
at a time are more vulnerable and can be affected a single
malicious/malfinctioning server.

B Windows versions and different
behaviors

Windows’ W32Time is also a SNTP-based client, similar to
macOS. It operates in a similar fashion by sending requests at
long intervals, using the time.windows.com server pool. How-
ever, the behavior differs between Windows Server (2025)
and Windows Home (2025). While both function similarly,

http://tools.ietf.org/rfc/rfc4120.txt
https://docs.ntpd-rs.pendulum-project.org/man/ntp.toml.5/
https://www.ntpsec.org
https://www.cnmoc.usff.navy.mil/Our-Commands/United-States-Naval-Observatory/Precise-Time-Department/Network-Time-Protocol-NTP/
https://www.cnmoc.usff.navy.mil/Our-Commands/United-States-Naval-Observatory/Precise-Time-Department/Network-Time-Protocol-NTP/
https://www.cnmoc.usff.navy.mil/Our-Commands/United-States-Naval-Observatory/Precise-Time-Department/Network-Time-Protocol-NTP/
https://www.ntppool.org/en/
https://www.ntppool.org/en/
https://chrony-project.org/
https://github.com/pendulum-project/ntpd-rs/blob/main/docs/algorithm/algorithm.pdf
https://github.com/pendulum-project/ntpd-rs/blob/main/docs/algorithm/algorithm.pdf
https://github.com/pendulum-project/ntpd-rs/blob/main/docs/algorithm/algorithm.pdf
http://tools.ietf.org/rfc/rfc8633.txt
http://tools.ietf.org/rfc/rfc8446.txt
https://doi.org/10.1109/EuroSP.2018.00017
http://tools.ietf.org/rfc/rfc4430.txt
http://tools.ietf.org/rfc/rfc4430.txt
https://github.com/pendulum-project/ntpd-rs/issues/1867
https://github.com/pendulum-project/ntpd-rs/issues/1867
https://github.com/openntpd-portable/openntpd-portable/issues/77
https://github.com/openntpd-portable/openntpd-portable/issues/77
https://github.com/systemd/systemd/pull/39010
https://systemd.io/
https://systemd.io/
https://github.com/canonical/multipass
https://github.com/canonical/multipass
https://man.openbsd.org/ntpd.conf
https://mac.getutm.app/
https://mac.getutm.app/

Are NTP clients always right?

Server 3

Server 2

FEOOOOOOOOOOONK X X X X X X X X
1:06:40 1:40:00 21320 2:46:40 2:20:00 3:53:20

Server 1
0:00:00

Duration (HH:MM:SS)

(a) ntpd
Server 31X X X X X
Server 2
Server 1 X X X X X X

00000 (3320 1.06:40 14000 91220 94640 9.90:00 .53:20
Duration (HH:MM:SS)
(b) mac0S

Server 2

Server 1 P S S K
10640 000 99030 30680 02000 145320
Duration (HH:MMSS)
(c) W32Time

Server 1

£:00:00 0:33:2

1:40:00 213
Duration (HH:MM:

(d) NTPD-RS

Figure 5: Distinct server utilization patterns.

the key difference is the polling rate. Windows Server has
a polling rate of 10, meaning it requests time updates every
17 minutes, while Windows Home has a polling rate of 15,
meaning it requests updates every 9 hours.

B.1 Windows as a Standalone System.

Windows devices that are not part of a domain rely on pub-
lic NTP servers provided by time.windows.com. These ma-
chines trust the servers assigned by DNS, similar to macOS.
If an attacker successfully hijacks DNS resolution, they could
redirect the system’s NTP requests to a malicious time server,
allowing them to manipulate the clock without the user’s
knowledge.

Windows Home updates its clock every 9 hours. However,
if the system is hibernating or shut down at the scheduled
update time, Windows does not immediately synchronize
upon wake-up. Instead, it skips the update and attempts it 9

hours later. This means that if a user only uses their device
intermittently, their system can remain unsynchronized for
days or even weeks and drift by itself significantly.

For Windows Home, the minimum and maximum polling
rates are 10 and 15, whereas for Windows Server, they are
6 and 10 [23]. Windows Server can be configured to accept
time only from internal sources, but by default, it still allows
synchronization with time.windows. com when no domain
controller is configured. Additionally, Windows automat-
ically rejects time shifts greater than two weeks, but this
limit can be lowered via Group Policy settings in Pro and
Enterprise editions [23].

B.2 Windows as Part of a Domain.

(Active Directory & Group Policy Enforcement.) In domain-
joined environments, Windows devices do not typically use
time. windows.com for synchronization. Instead, they rely
on time updates from Active Directory domain controllers
(AD DCs), which adds additional security and accuracy. The
primary domain controller (PDC) serves as the main time
authority for domain members.

Microsoft has also developed a variant of their SNTP client,
as defined in [22]. This client is built on top of NTPv3, defined
in RFC1305, and SNTPv4, defined in RFC2030. It introduces
additional fields for packet authentication, which is only
performed when messages remain within the domain and
are not sent to public servers. Two new fields are added: an
Authenticator field (160 bits) or an ExtendedAuthenticator
field (576 bits). This significantly increases the packet size
from 48 bytes to either 68 or 120 bytes.

The Authenticator field includes a Key Identifier and a
128-bit cryptographic checksum for the packet. The Extended
Authenticator field contains the key identifier, flags, hashes,
and a 512-bit cryptographic checksum. The key identifier is
shared between the server and clients when a client joins the
domain. Typically, a client only sends requests to its desig-
nated domain controller, as enforced by the domain’s Group
Policy Objects (GPOs) [22].

Domain controllers themselves synchronize their clocks
by sending requests to their parent DCs in the forest, with
only the PDC making requests to external sources. This
hierarchical structure creates a potential attack vector: if
an attacker can hijack and force the PDC to synchronize
with a rogue time source, they could, in theory, poison the
entire domain.

C Ubuntu Chrony with NTS Experiment

We have shown in §2 that Chrony, as a NTP cliends, sends
more queries to NTP servers than timesyncd, a SNTP-based
client.

Shreyas Konjerla, Giovane C. M. Moura, Georgios Smaragdakis, and Tamme Dittrich

Next we configure two Ubuntu VMS (Ubuntu 24.04.3 LTS,
one in AMS and the other in SYD) and use them to exti-
mate the increase in NTP traffic for a Ubuntu system when
it switches to Chrony- as it will be the default set in Oct.
2025 [18].

C.1 timesyncd setup

Listing 1 shows the default timesyncd configuration file
shipped with Ubuntu. As can be seen, it will use only one
server: one address from ntp.ubuntu.com

We run this configuration for 60 h and capture NTP pack-
ets on both servers using tcpdump.

/etc/systemd/timesyncd.conf

[Timel]

#NTP=
#FallbackNTP=ntp.ubuntu.com
#RootDistanceMaxSec=5
#PollIntervalMinSec=32
#PollIntervalMaxSec=2048
#ConnectionRetrySec=30
#SavelntervalSec=60

Listing 1: timesyncd Config File

C.2 Chrony setup

After running the experiment with timesyncd, we installed
Chrony using the default Ubuntu’s package.

However, we had to change its original configuration,
given the Chrony package it ships with this released (24.04.03)
is not yet configured to use NTS by default. To reproduce the
setup that October 2025 (25.10) release will have, we down-
loaded the file chrony_4.7-1ubuntul.debian. tar.xz from
Ubuntu’s packages site [9], and copied Chrony’s configura-
tion files from it, replacing the original ones from our VMs
with those we manually downloaded.

In this way, we have exactly the same setup that Ubuntu
will ship in 25.10 with Chrony and NTS by default. Listing 2
shows the main configuration (we excluded comments for
brevity), and it shows in line 2 how the NTP servers are set
in another file, which we show in Listing 3.

/etc/chrony/chrony.conf

sourcedir /etc/chrony/sources.d
keyfile /etc/chrony/chrony.keys
driftfile /var/lib/chrony/chrony.drift
ntsdumpdir /var/lib/chrony

logdir /var/log/chrony

maxupdateskew 100.0

rtcsync

makestep 1 3

confdir /etc/chrony/conf.d

Listing 2: Chrony main

sources.d/ubuntu-ntp-pools.sources

Use NTS by default

NTS uses an additional port to negotiate security:
4460/ tcp

The normal NTP port remains in use: 123/udp

11
12

pool 1.ntp.ubuntu. iburst 1 nts prefer

pool 2.ntp.ubuntu.com iburst maxsources 1 nts prefer

pool 3.ntp.ubuntu.com iburst maxsources 1 nts prefer

pool 4.ntp.ubuntu.com iburst maxsources 1 nts prefer

The bootstrap server is needed by systems without a
hardware clock, or a very

large initial clock offset.
set is defined in

/etc/chrony/conf.d/ubuntu-nts.conf.

pool ntp-bootstrap.ubuntu.com iburst maxsources 1 nts

certset 1

com maxsources

The specified certificate

Listing 3: Chrony sources

Just like timesyncd, we run it for roughly 60 h, and cap-
ture traffic with tcpdump.
Next we compare the results.

C.3 Results

Table 6 and Table 7 summarize the experiments for both
AMS and SYD VMs. As expected, timesyncd uses a single
NTP server, whereas Chrony use multiple servers (5 in each
case), and send more queries per hour to each server than
timesyncd.

Notice that only Chrony uses NTS, and NTS queries and re-
sponses are larger, given they use NTP extension fields (NTS
Cookie and NTS Authenticator and Encrypted Extensions),
more than doubling its size (110 to 250).

D Apple vulnerability Discussion

As mentioned in §3.2, macOS has a vulnerability that can
be exploited by an attacker to shift the time of the system
clock by any amount. It does not have any restrictions or
panic thresholds such as windows or other NTP clients. We
reported this issue to Apple at first they mentioned since we
changed the time source itself, it was a severe issue and an
attack vector cannot be executed. We later tried the same
without changing the time source by first DNS poisoning.
This was not successful since Apple uses other heuristics
and DNS-over-HTTPS (DoH) for some queries. We then
tried IP spoofing where the router will route NTP queries to
the attacker and the attacker will respond with a malicious
response with a spoofed IP source address. This attack was
successful and we were able to shift the clock by up to 30
years. We also reported this back to attack but after their
reviews, they concluded was beyond the scope of macOS
security as it involved an attacker-controlled router.

E Extra tables

Table 8 sumamrizes the issues and bugs we found with S/NTP
clients we evaluated.

We also found that OpenNTPd cannot handle NTP ERA
rollover, which we include in Appendix G.

Are NTP clients always right?

timesyncd
NTP Server #Que | # Resp. | Que. (Bytes) | Resp (Bytes) | Avg Que. | Avg Resp. | Span(s) | Queries/hr
2620:2d:4000:1::41 128 128 14080 14080 110 110 | 251871.51 1.83
Chrony
NTP Server # Que | # Resp. | Que. (Bytes) | Resp (Bytes) | Avg Que. | Avg Resp. | Span (s) | Queries/hr
2620:2d:4000:1::1123 333 333 83250 83250 250.00 250.00 | 243106.66 4.93
2620:2d:4000:1::3123 301 301 75250 75250 250.00 250.00 | 242736.12 4.46
91.189.91.112 270 270 62100 62100 230.00 230.00 | 242586.90 4.01
2620:2d:4002:1::3123 265 223 70398 59354 265.65 266.16 | 243004.06 3.93
185.125.190.122 263 263 60490 60490 230.00 230.00 | 242112.52 3.91

Table 6: AMS Server Traffic Summary

timesyncd
NTP Server # Que | # Resp. | Que. (Bytes) | Resp (Bytes) | Avg Que. | Avg Resp. | Span (s) | Queries/hr
2620:2d:4000:1::40 128 128 14080 14080 110.00 110.00 | 251903.33 1.83
Chrony
NTP Server #Que | # Resp. | Que. (Bytes) | Resp (Bytes) | Avg Que. | Avg Resp. | Span(s) | Queries/hr
185.125.190.123 299 293 69586 67798 232.73 231.39 | 242767.78 4.43
185.125.190.122 277 272 64118 62900 231.47 231.25 | 242283.66 4.12
2620:2d:4002:1::2123 267 259 67362 65294 252.29 252.10 | 242266.92 3.97
2620:2d:4002:1::3123 266 209 72688 57010 273.26 272.78 | 242472.44 3.95
2620:2d:4000:1::1123 263 263 65750 65750 250.00 250.00 | 242276.70 391

Table 7: SYD Server Traffic Summary

Software Issue Vendor response
1 NTPD-RS Queries surge to nearby servers (§2.3.2) Feature, not a bug
2 Ubuntu Traffic growth by using Chrony and NTS (§2.4) Acknowledged
3 mac0S Vulnerable to time shift (§3.1.3) “Not a bug”
4 timesyncd Vulnerable to time shift (§3.1.3) Waiting
5 W32Time Vulnerable to time shift (§3.1.3)

6 Debian Linux Vulnerable to time shift (§3.1.3) Responded, add NTS support
7 NTPD-RS Crashes during time shift attacks (§3.1.3) Notified
8 NTPD-RS KoD Bug (too many queries — §3.2) Bug patched [41]
9 ntpd Stops operating with responded with RATE (§3.2) Acknowledged
10 ntpd Keeps sending queries after receiving DENY (§3.2) Acknowledged
11 OpenNTPd Cannot handle ERA rollover Notified

Table 8: Clients issues observed in the paper and CVDs status (2025-09-25).

F Ethics and CVD

Our work poses one ethical challenge: the notification of
vendors of the bugs/vulnerabilities in their software. In total,
we have identified eleven issues/bugs and notified all vendors
(Table 8). As of the moment of this writing, only one was
fixed, and the others are either waiting or considered not to
be a bug.

The response we obtained from Apple in case of time shift
attacks issue, was that “Users are allowed to point to the time
server of their choosing in System Settings after authenticat-
ing and should always consider care when overriding system
defaults”.

G EraRollover bug

NTP timestamps are 64-bit timestamp format, consisting of a
32-bit part for seconds and a 32-bit part for fractional seconds.
Specifically, the 32-bit seconds field overflows approximately
every 2% seconds, or about 136 years, each period defined
as eras. The first NTP era (era 0) began at 00:00:00 UTC on
1 January 1900, and the era 1 will commence on 7 February
2036.

Without proper handling of these era transitions, other-
wise when era 1 arrives, they may assume that time is 1900.
Consequently, modern NTP implementations need to have
mechanisms to infer the correct era “derived from external
means, such as the file system or dedicated hardware” [25].

Shreyas Konjerla, Giovane C. M. Moura, Georgios Smaragdakis, and Tamme Dittrich

Client Start up offset Era aware In this section, we evaluate whether the NTP clients are
NTPD Yes Yes era-aware. We use the same setup used in the previous ex-
NTPD-RS ~ giES e periments and set the clients clock to one hour before the
NTPSec Yes Yes .
OpenNTPd | ¥ N end of era 0. Then, we monitor the systems clock.

pen e © Table 9 shows the experiment results. From the clients we
TimesyncD Yes Yes .
Chrony Yes Yes manage to bring the clock to the end of era 0, only OpenNTPd
macOS No Yes was not era aware: it computed a large offset (136 years) but
Windows No Yes refused to update its clock, likely assuming it was a time

shift attack (as in §3.1). We notified the OpenNTPd developers

Table 9: Eras rollover experiment results
and waiting to hear back from them [42].

	Abstract
	1 Introduction
	2 Client's Baseline Behavior
	2.1 Expected behavior
	2.2 Experimental setup
	2.3 Results
	2.4 Ubuntu switch to Chrony

	3 Attacking Clients
	3.1 Time shifting attacks
	3.2 Kiss-o'-Death (KoD) attacks

	4 Discussion and recommendations
	5 Related Work
	6 Conclusion
	References
	A Extra figures
	B Windows versions and different behaviors
	B.1 Windows as a Standalone System.
	B.2 Windows as Part of a Domain.

	C Ubuntu Chrony with NTS Experiment
	C.1 timesyncd setup
	C.2 Chrony setup
	C.3 Results

	D Apple vulnerability Discussion
	E Extra tables
	F Ethics and CVD
	G Era Rollover bug

