
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Accelerating the SCION IP Gateway
using programmable data planes

Max C. Kellaway
M.Sc. Thesis

September 2022

Examiners:
prof. dr. ir. C. E. W. Hesselman (UT)

prof. dr. ir. R. M. van Rijswijk-Deij (UT)
dr. ing. F. W. Hahn (UT)

Advisors:
dr. A. Abhishta (UT)

dr. ing. R. Koning (SIDN Labs)
ir. C. Schutijser (SIDN Labs)

DACS Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

This work focuses on performance accelerating the SCION IP Gateway (SIG) using
Open Programmable Data Plane (OPDP) technologies. SCION is a new clean slate
Internet protocol with the goal of increasing scalability, control, transparency and
security. SCION achieves these goals primarily by encoding the packets’ path inside
the packet header and cryptographically signing and verifying this path. The SIG is
used to enable communication between IP-based hosts and SCION-based hosts.
The SIG needs to be performance optimised since many IP-based end-hosts will
send their traffic to the SIG, resulting in traffic aggregation at the SIG due to the
many-to-one connection.

An OPDP is an open-source data plane written in code resulting in transparent
data plane behaviour. We define three possible spaces for OPDPs, the hardware
space, the kernel space and the user space. Each space brings along a variety of
possible programming languages. For the hardware space, we consider P4 with the
Intel Tofino architecture. We consider eBPF an in-kernel virtual machine for custom
in-kernel code execution with the eXpress Data Path (XDP) and Traffic Control (TC)
networking hooks for the kernel space. The current open source SIG implementation
is a user space OPDP written in Go.

We have performed a literature study on the performance of OPDPs and SCION.
To the best of our knowledge, at the time of writing, we are the first to perform
measurements on the SIG performance and to accelerate the SIG since we did not
find any literature on the performance or acceleration attempts of the SIG.

To determine which OPDP is best suited for the acceleration, we tried to develop
prototypes for a P4-based (hardware space), XDP-based (kernel space) and TC-
based (kernel space) SIG. The TC-based SIG implementation was the only func-
tioning prototype. The P4-based SIG could not perform the required reassembly
operations. An XDP-based OPDP was incompatible since XDP programs could not
be connected to the ingress side of interfaces, a requirement for correctly redirecting
the packets.

We have created an automated virtualised test setup for performance measure-
ments on SIGs. We perform the measurements on the user space SIG and our
TC-based SIG. We analyse RTT to determine the processing delay caused by the

iii

IV ABSTRACT

SIG and analyse throughput to assess the maximum forwarding speed.
Our analysis shows a 64% throughput increase whilst reducing the average la-

tency by 45% and the CPU utilisation by 99% for the TC-based SIG compared to
the user space SIG.

Therefore, we show that accelerating the SIG is possible using a TC-based
OPDP resulting in higher throughput and lower RTT whilst reducing the CPU load.
However, there still is room for improvement of the TC-based SIG supported by our
measurement results and future work ideas.

Acknowledgements

This thesis and research would not have been possible without the help of some
organisations and people.

Firstly, I would like to thank SIDN Labs for supporting me and making the re-
search possible. I want to thank Ralph and Caspar specifically for the daily super-
vision from the perspective of SIDN Labs. Cristian Hesselman is the chair of my
committee, who helped guide the research direction during our meetings which I
am grateful for. Thank you to Roland van Rijswijk-Deij, Florian Hahn and Abhishta
Abhista for participating in my graduation committee.

I would also like to thank Ronald van der Pol from SURF as the subject matter
expert which whom I had the email contact concerning the OPDP implementations
and SIG requirements. Besides Ronald, I also want to thank Intel for reviewing my
thesis concerning their Tofino switch.

v

VI ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Internet Architectures . 1
1.2 Open Programmable Data Planes (OPDP) 2
1.3 Problem Statement . 2
1.4 Goal and Research Questions . 3
1.5 Contributions . 4
1.6 Approach . 4
1.7 Open-source Code and Data . 4
1.8 Thesis Outline . 5

2 The SCION Internet Architecture 7
2.1 SCION Goals . 7
2.2 SCION Key Concepts . 7
2.3 SCION Deployment . 9
2.4 SCION IP Gateway (SIG) . 12

3 Open Programmable Data Planes (OPDPs) 15
3.1 OPDP Types . 15

3.1.1 Hardware-based . 16
3.1.2 Kernel-based . 17
3.1.3 User Space-based . 17
3.1.4 Hybrid-based . 18

3.2 Open versus Closed Programmable Data Planes 18
3.3 Programming Languages for OPDPs 19

3.3.1 P4 . 19
3.3.2 eBPF . 22
3.3.3 XDP . 25

vii

VIII CONTENTS

3.3.4 TC . 26

4 Related Work on SCION and OPDP Performance 29
4.1 SCION . 29
4.2 XDP and TC . 30
4.3 P4 . 30

5 OPDP-based Implementations of the SIG 33
5.1 Requirements . 33
5.2 Hardware-based Implementation using P4 34
5.3 Kernel-based Implementation using XDP 34
5.4 Kernel-based Implementation using TC 38

6 Measurement Methodology 41
6.1 Performance Parameters . 41
6.2 Measurement Setup . 42
6.3 Scenarios for Measurement Traffic . 43
6.4 Measurement Tools . 45
6.5 Reproducibility . 46

7 Experiments with a TC-based SIG 47
7.1 RTT . 47
7.2 Throughput . 51
7.3 CPU Utilisation . 54
7.4 Packet Loss . 57

8 Discussion 59
8.1 P4-based SIG . 59
8.2 Testbed . 60
8.3 Experiments with a TC-based SIG . 60
8.4 SIG Framing Protocol . 61

9 Conclusions, Recommendations and Future Work 63
9.1 Conclusions . 63
9.2 Recommendations . 64
9.3 Future Work . 65

9.3.1 OPDP Implementations for the SIG 65
9.3.2 Measurement Setup . 66
9.3.3 Measurements . 66

References 67

CONTENTS IX

Appendices

A List of Acronyms 73

X CONTENTS

Chapter 1

Introduction

In this chapter, we give an introduction to Internet Architectures (sec. 1.1) and intro-
duce the concept of an Open Programmable Data Plane (OPDP) (sec. 1.2). Next,
we discuss our problem statement (sec. 1.3), the accompanying research questions
(sec. 1.4) and our contributions to science (sec. 1.5). Then, we explain where to
find our open-source work (sec. 1.7). We conclude this chapter by discussing the
approach we used for our research (sec. 1.6) and the different chapters our thesis
consists of (sec. 1.8).

1.1 Internet Architectures

The current generation Internet consists of inter-connected Autonomous Systems
(ASes), with Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6)
used as addressing schemes. Border Gateway Protocol (BGP) is the routing proto-
col used in the Internet and distributes the available routes between the AS. BGP is
an inter-domain routing protocol for routing between ASes whereas an intra-domain
routing protocol would be used for routing within an AS.

The current Internet is not perfect, resulting in researchers looking into possi-
ble replacements for the Internet. Multiple clean slate Internet architectures are
developed like NDN [1], RINA [2] and Scalability, Control, and Isolation On Next-
Generation Networks (SCION) [3], to name a few. Clean slate Internet architectures
have the advantage that they can be designed with the experience gained from the
current Internet, without the limitations of the existing Internet infrastructure. The
downside of clean slate architectures is the need for transition technologies like the
SCION IP Gateway (SIG) to achieve the deployment of the clean slate architecture.
Our research focuses on SCION as the replacement for the current Internet architec-
ture. SCION is designed from the ground up with the goal of increasing scalability,
control, transparency and security.

1

2 CHAPTER 1. INTRODUCTION

New clean slate Internet Architectures cannot be trivially deployed to the Internet
due to protocol incompatibilities. A transition technology is required to translate
between these two protocols. For SCION, this translation technology is called the
SIG [4]. The SIG lets legacy hosts communicate with each other over a secure
SCION backbone, enabling coexistence. The SIG devices will be deployed at the
edges between the current Internet Protocol (IP)-based and SCION network.

1.2 Open Programmable Data Planes (OPDP)

The data plane is responsible for packet processing and forwarding operations. The
data plane is sometimes referred to as the forwarding plane. We expand the data
plane definition with the addition of an Open Programmable Data Plane (OPDP). An
OPDP is a reprogrammable data plane defined using open-source code.

OPDPs are important since they increase the transparency of the network. The
open-source OPDP code defines the functionality and behaviour of the data plane
resulting in total transparency with regard to the forwarding operations. Furthermore,
OPDPs increase the flexibility of the network since the data planes’ behaviour is
reprogrammable.

An OPDP can be implemented using hardware or software. There is a distinc-
tion between kernel space and user space for software implementations. The differ-
ent implementation options result in hardware-based, kernel-based or user space-
based OPDP types.

OPDPs need to be programmed through a programming language such as P4 or
eBPF. P4 is a domain-specific language made for hardware space implementations.
eBPF is a technology used for kernel space implementations. eBPF supports two
networking hooks to attach programs to eXpress Data Path (XDP) and Traffic Control
(TC), where XDP programs execute before TC programs. XDP, however, is more
restricted in functionality than TC.

1.3 Problem Statement

Suppose the SIG is deployed in a large-scale production environment. In that
case, the packet processing throughput should be highly optimised since multiple
IP-based end-hosts will send their packets to the SIG to be forwarded using SCION
as secure backbone [5]. The aggregation of packets at the SIG makes the SIG a
potential bottleneck in the packet forwarding plane.

The current open-source implementation of the SIG utilises a user space-based
OPDP written in Go. The implementation does not utilise state-of-the-art OPDP

1.4. GOAL AND RESEARCH QUESTIONS 3

technologies, such as eBPF or P4, to accelerate network processing, probably re-
sulting in sub-optimal performance and efficiency. There is a closed-source perfor-
mance optimised implementation by Anapaya [6], but it is not an OPDP; therefore,
we will not consider it in our work.

Furthermore, optimising the SIG is not a straightforward task. There are at
present multiple promising state-of-the-art technologies for OPDPs (e.g., p4 and
XDP), but it is unclear which technology best suits the job of accelerating the SIG.
The uncertainty is due to the fact that limited functionality of a new technology could
result in the SIG not being implementable with the specific technology, e.g. a P4
hardware constraint like an insufficient parsing depth. Even if the SIG can be im-
plemented through an accelerated OPDP, the achieved performance gain with a
specific technology is also uncertain.

To conclude, the problem that this thesis addresses is that we currently do not
sufficiently understand which state-of-the-art OPDP technologies are most suitable
and efficient to speed up the performance of the SIG.

1.4 Goal and Research Questions

The high-level goal of our research is to aid the implementation and deployment
of a SCION-based Internet. This contribution is achieved by researching possible
performance optimisations of the SIG using state-of-the-art OPDPs. However, the
lessons learned should not be limited to the SIG framing protocol or specific OPDPs.
An implementation of the SIG is already available for commodity hardware using a
CPU [7] written in Go. However, we expect that there are performance and efficiency
gains to be made when using state-of-the-art OPDPs like P4 switches or eBPF. We
expect these gains since the OPDPs are designed to perform packet forwarding
compared to the CPU’s general execution of tasks.

We formulate the main research question and divide it into sub-questions to
achieve the abovementioned goal.

RQ1 To what extent can state-of-the-art OPDPs be used to accelerate the perfor-
mance of a SIG?

RQ2 What test setup do we require to perform the performance measurements on
the SIG and OPDP SIG?

RQ3 Which OPDP technology is best suited to improve the SIG performance?

RQ4 What performance gains can be achieved using state-of-the-art OPDPs?

4 CHAPTER 1. INTRODUCTION

1.5 Contributions

Our research contributes to society and science in various ways. Our innovations
are:

• An open-source performance accelerated SIG prototype, based on eBPF TC.

• A detailed performance analysis of the SIG and an TC OPDP-based SIG.

• An automated, reproducible measurement setup for performance measure-
ments on SIG implementations.

• Recommendations for protocol creators and OPDP developers on points to
consider for future Internet Architectures and the implementations thereof.

1.6 Approach

We start our research with a literature study to understand the working of SCION
and the SIG and to map the current state-of-the-art OPDPs. Using the literature
found, we also get an indication of the baseline performance of SCION.

Next, we specify the measurement methodology. Then we create a test setup to
perform a baseline measurement of the performance specific to our testbed and to
be able to evaluate our design. The baseline performance measurement helps us
determine current bottlenecks in the SIG and we use it to evaluate our design once
implemented.

After we perform the baseline measurements, we implement the OPDP-based
versions of the SIG. We analyse multiple OPDPs to determine which is best suited
for accelerating the SIG performance. A Go (user space) implementation of the SIG
already exists [7]. Therefore we create a P4 (hardware space) and an eBPF (kernel
space) implementation.

Once we have implemented the designs, we use the same measurement method-
ology as the baseline measurement to evaluate the OPDP performance. Finally, we
compare the OPDP SIG implementations against the existing user space SIG and
analyse the effectiveness of our performance acceleration.

1.7 Open-source Code and Data

We mention in sec. 1.5 that we have created an open-source TC-based SIG. The
link to the repository containing the implementation is 1. The repository contains our

1https://github.com/SIDN/opdp-sig

https://github.com/SIDN/opdp-sig

1.8. THESIS OUTLINE 5

TC-based and XDP-based implementations, the scripts for the automated virtualised
measurement testbed and the raw data of our experiments. The readme in the
repository explains the repository structure in more detail.

1.8 Thesis Outline

In chapter 2, we give a more in-depth explanation of the workings of SCION and,
more importantly, the working of the SIG. We explain the working of different OPDP
types and their programming languages in chapter 3. In chapter 4, as a result of our
literature study, we discuss the research performed by others on the SIG and OPDP
performance.

Chapter 5 describes the data plane requirements of the SIG as well as our
OPDP-based SIG implementations. In chapter 6, we explain the measurement
methodology and testbed we use for performance measurements on OPDP-based
SIGs. Next, we discuss the results of the experiments of a TC-based SIG in chap-
ter 7. Chapter 8 discusses the possible improvements for our measurements, pro-
totype and the SIG framing protocol. Finally, we conclude our thesis and provide
recommendations and future research directions in chapter 9.

6 CHAPTER 1. INTRODUCTION

Chapter 2

The SCION Internet Architecture

The first major technology in our work is SCION. In this chapter, we briefly introduce
how a SCION-based Internet works (sec. 2.1 to 2.3) as well as the component that
we will focus on in the rest of this thesis: the SCION IP Gateway (SIG) (sec. 2.4).
However, we cannot cover all SCION details within this master thesis. For this, we
would like to recommend the official SCION book [5].

2.1 SCION Goals

Scalability, Control, and Isolation On Next-Generation Networks (SCION) is a clean
slate Internet architecture developed by researchers at ETH Zurich. SCION aims to
solve the problems found in the current Internet (e.g., BGP hijacking [8]) by providing
a new design that is not limited by the current situation. SCION has the following
(new) high-level objectives: availability in the presence of distributed adversaries,
transparency and control (over trust roots), efficiency, scalability, extensibility, sup-
port for global but heterogeneous trust, deployability and foundation for other archi-
tectures [3]. These objectives are met by providing secure inter-domain routing and
path-aware networking.

In contrast to most other clean slate Internet architectures such as RINA and
NDN, SCION is at quite an advanced stage in development. SCIONLab, the global
SCION research network proves the advanced stage (more on SCIONLab in sec. 2.3).

2.2 SCION Key Concepts

For SCION to achieve the above-mentioned goals, they introduced the concept of
Isolation Domains (ISDs). An ISD is a logical grouping of Autonomous Systems
(ASes) enabling scoped trust. This grouping can be performed based on different
criteria, e.g. political, geographical, or business criteria. A smaller subset of ASes

7

8 CHAPTER 2. THE SCION INTERNET ARCHITECTURE

from the ISD form the ISD core. Within this core, the ASes agree on a so-called
Trust Root Configuration (TRC). The TRC defines the roots of trust and validates
names, public keys and addresses. An AS can be in multiple ISDs. Fig. 2.1 gives an
overview of how ASes can be grouped in ISDs. Each coloured circle illustrates an
ISD with the light grey circle forming the ISD core. The white circles are the ASes,
and links between the ASes are grey.

Figure 2.1: Overview of possible AS groupings within SCION ISDs. [3]

Path discovery is the process in SCION where the AS determines the available
paths by listening to beaconing messages advertising paths. SCION defines three
types of connections between ASes: core links, customer-provider links and peering
links. Core links are between ASes in an ISD core. Customer-provider links are be-
tween down and upstream ASes. ASes can also share a link without path discovery,
called a peering link. This link is only available for the traffic of the two connected
ASes. All three link types are allowed to cross ISD boundaries.

SCION achieves complete separation between control and data plane operations
using Packet Carried Forwarding State (PCFS). PCFS enables the separation since
the data plane has access to the required routing data since it is stored in the packet
header. The header of every packet stores the required path information. Hop
Fields (HFs) in the packet’s header store every AS hop. The separation of the two
planes is desirable for multiple reasons. It increases resiliency against adversaries
since the data plane can keep forwarding messages if the control plane is attacked.
Furthermore, the separation of planes results in increased transparency due to the
separation of concerns narrowing down the responsibility of a component.

”SCIONs PCFS” is beneficial for more reasons than separating the control and
data plane. It enables path control for the user to choose the path that the packet
takes on an AS level. This is a crucial difference compared to the working of the

2.3. SCION DEPLOYMENT 9

current Internet and a big step forward for the security, transparency and controlla-
bility properties. Currently, the inter-domain routing tables inside routers are filled
using the BGP protocol. The router looks up the egress port using the destination
IP address in the routing table to determine how to route the packet. The PCFS
eliminates the need for inter-domain routing table lookup because the forwarding
path is in the packets themselves, speeding up the routing performance and de-
creasing the hardware requirements since the size of the current routing tables for
the Internet is increasingly problematic [9]. SCION ensures authenticity by using
a cryptographically signed field the Message Authentication Code (MAC), for every
HF.

2.3 SCION Deployment

To deploy SCION within an AS, multiple server components are necessary [5].

• A beacon server to handle the path discovery messages (Path-segment Con-
struction Beacons (PCBs)).

• A path server that stores the available paths and responds to client path queries.

• A name server that provides translation between human-readable names and
(ISD, AS, address) triples that clients need to query paths.

• A certificate that server manages the AS certificates, keys, and caches the
TRC.

• A border router for packet forwarding, be it to the next border router or an
end-host inside the AS.

At least one of each server type is necessary to operate a SCION AS, but an opera-
tor can deploy multiple servers of each type for performance/scaling considerations.
An example of the structure inside an AS can be seen in fig. 2.2.

Once an AS is SCION-enabled, the next step is to make hosts SCION aware.
Fig. 2.3 gives an overview of how hosts interact with SCION. The SCION daemon
(purple box) and dispatcher (red box) are the components that enable a host to com-
municate SCION natively. The daemon handles the control plane messages from
the SCION control service (dark grey) and provides an Application Programming
Interface (API) for applications (orange box) and libraries to interact with the con-
trol plane, e.g. for path lookup requests. The dispatcher is responsible for handling
the incoming SCION messages from the SCION border router (green box) and dis-
tributing them to SCION native applications via a UNIX socket. The SCION book [5]

10 CHAPTER 2. THE SCION INTERNET ARCHITECTURE

Figure 2.2: In-depth SCION architecture example. On the left an ISD is shown with the PCB prop-
agation between ASes. On the right the inside of an AS with the required server components is
shown. [3]

mentions that the dispatcher functionality in the future will probably be transferred to
inside the kernel due to performance considerations.

Where possible, SCION gives freedom to the operators of an AS. Examples of
this are the option to choose the address format used for hosts within an AS, the
option to choose the used encryption algorithm for the MAC and the option to choose
the intra-domain routing protocol. The protocol developers think this freedom could
help in the adoption of the protocol since the operators do not have to agree on all
the implementation details [5].

SCION offers built-in support for extensions. Every Packet Is Checked (EPIC)
and Collaborative lightweight inter-domain bandwidth-reservation infrastructure (COLIBRI)
are the two currently available extensions enabling increased packet authentication
(EPIC) and path bandwidth/Quality of Service (QoS) reservations (COLIBRI). These
extensions are out of scope for this study. Therefore, we will not explain them in more
depth.

SCIONLab [11] is a global research network for developing and testing the pro-
tocol. Stichting Internet Domeinregistratie Nederland (SIDN) Labs operates one AS
inside this network, the topology of SCIONLab can be seen in fig. 2.4. We could
use the SCIONLab network to perform tests for this research. Anapaya [6], an ETH
Zurich spinoff company, created and runs the first production SCION network. This
network includes Internet Service Providers (ISPs), banks and research institutes in
Switzerland.

2.3. SCION DEPLOYMENT 11

Figure 2.3: Overview of the SCION components enabling native host communication. The SCION
daemon and dispatcher run inside the host whereas the border router and control service are de-
ployed within the AS. [10]

Figure 2.4: The SCIONLab topology showing the different ISDs and the connected AS. [11]

12 CHAPTER 2. THE SCION INTERNET ARCHITECTURE

2.4 SCION IP Gateway (SIG)

As explained in the previous section, SCION aims for an incremental and easy de-
ployment process, stimulating faster protocol adoption. Legacy hosts and equipment
are not capable of talking native SCION since they are unaware of the new proto-
col. The SIG [4] aids in the gradual transition to SCION by solving that problem.
The legacy hosts are unaware of the SCION functionality of the SIG. The hosts can
communicate with each other as usual using IP but with the advantages of being
connected via a secure SCION-based backbone. Fig. 2.5 illustrates how two SIG
instances tunnel the traffic of IP-based hosts in different IPs networks over SCION.

Figure 2.5: High-level overview of the SIG tunnel between the sending and receiving SIG connecting
two IP networks over SCION. [12]

The SCION community created an implementation [7] of the SIG in Go [13].
Since it is open-source and written in Go, anyone can run the implementation on
commodity server hardware which is widely available. However, the efficiency and
throughput are likely lower than those achieved with an OPDP (e.g., based on P4
and a Tofino Application-Specific Integrated Circuit (ASIC)), as we will discuss in the
next chapter.

The SIG encapsulates IP traffic between two SIG instances using the SIG Fram-
ing Protocol [14]. SCION/User Datagram Protocol (UDP) carries the SIG framing
protocol, resulting in that the SCION dispatcher can handle the SCION packet re-
ceiving and distribution [5]. A SIG frame can encapsulate a partial, a single or mul-
tiple IP packet(s). We give a high-level overview of the SIG’s tunnelling functionality
in fig. 2.5. The sending SIG in the client’s AS will encapsulate the IP traffic inside
a SCION packet. The receiving SIG in the receiver’s AS will unwrap the packet,
resulting in a regular IP packet.

Fig. 2.6 gives an example of the different types of packet encapsulation. The
blue dotted boxes are the SIG frames and the orange boxes are the encapsulated
IP packets. For example, packet P3 is to big to fit in a single SIG frame so it is
fragmented over frames with sequence numbers 1 through 3.

The data plane operations of the SIG are different for the sending and receiving

2.4. SCION IP GATEWAY (SIG) 13

Figure 2.6: SIG framing protocol encapsulation examples showing the scenarios of IP packets being
grouped into a single SIG frame or IP packets being fragmented over multiple SIG frames. [5]

sides. The sending side buffers the IP packets and encapsulates them with the
SCION header and path information gathered from the control plane. The sending
side might have to fragment incoming IP packets if these do not fit inside a single
SIG frame. An example of this is packet P3 in fig. 2.6. Packet P3 is too big to fit inside
a single SIG frame. Therefore it is fragmented over SIG frames 1 to 3. The SIG is
also responsible for setting correct checksums and other fields of the lower level
headers shown in fig. 2.8. The receiving side decapsulates the incoming IP packets
carried by the SIG frames. It might need to perform reassembly of IP packets if
the encapsulated IP packet is fragmented over multiple SIG frames. The SIG is not
responsible for performing MAC verification since the border router performs this,
which is within the same trusted AS.

SIG traffic can be sent over multiple SIG sessions. The SIG uses different ses-
sions to transport different classes of traffic (e.g. priority vs. normal.) Within each
session there may be multiple streams. Streams are useful to distinguish between
traffic sent by different SIG instances. For example, if the SIG is restarted, it will
create a new stream ID for each session. That way, the receiving SIG will know that
the new frame with a new stream ID does not carry trailing part of the unfinished IP
packet from a different stream [14].

Figure 2.7: The SIG framing protocol header defenition. [5]

Fig. 2.7 shows the fields of the SIG frame header, and fig. 2.8 gives an overview
of the total header stack. The header fields are defined as follows [5] [14]:

• The version field indicates the SIG framing version. Currently, only version 0
is supported.

• The session field indicates the used SIG session. The sessions are used to
distinguish priority and regular traffic.

14 CHAPTER 2. THE SCION INTERNET ARCHITECTURE

Figure 2.8: The entire header stack for the SIG framing protocol.

• The index is the byte offset of the first beginning of an IP packet within the
payload. If no IP packet starts in the payload, for example, if the frame contains
only a trailing part of an IP packet, the field must be set to 0xFFFF.

• The reserved field is reserved and must set to zero.

• The stream and the session field identify a unique sequence of SIG frames.

• The sequence number field indicates the position of the frame within a stream.
It starts from zero for a given direction of traffic and pair of SIGs (sending
and receiving) and increases monotonically by one with every SIG frame. It
resets whenever the sending SIG service restarts or the value reaches 264 −
1. Consecutive frames enable the reassembly of split IP packets split among
multiple frames.

Chapter 3

Open Programmable Data Planes
(OPDPs)

The second major concept in our work is that of an Open Programmable Data
Plane (OPDP), which is the set of functions responsible for processing and forward-
ing packets implemented through open-source code. In this chapter, we introduce
the concept and discuss the properties and types of OPDPs (sec. 3.1). Next, we
discuss the advantages of an open data plane compared to a closed data plane
(sec. 3.2). Finally, we explain the different programming languages we use for the
OPDP implementations (sec. 3.3).

3.1 OPDP Types

Networking equipment consists of a control plane and a data plane. The data plane
is responsible for processing and forwarding network packets, whereas the control
plane’s primary responsibility is deciding where and how to route the packet. The
control plane fills the routing tables necessary for the data plane to forward packets.
There are multiple implementation levels for the data plane, hardware-based, kernel-
based and software-based, each with their pros and cons. We discuss these pros
and cons for each space in the sections below. Fig. 3.1 shows a high-level abstrac-
tion of different data plane possibilities using the SIG as an example. The arrows
indicate that the lower levels have increased performance at the cost of flexibility.
The following subsections explain the different spaces for the data plane implemen-
tations.

15

16 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

Figure 3.1: An overview of the different spaces at which a data plane can be implemented. The ar-
rows indicate that the hardware space has the highest throughput, lowest latency and lowest flexibility
whereas user space has it the other way around. We also list some of the available programming
languages per space.

3.1.1 Hardware-based

Most high throughput current generation routers or switches perform packet forward-
ing using ASICs [15]. These ASICs are fixed-function hardware chips used for their
efficiency and relatively low cost. The packets are forwarded using hardware only;
hence there is no operating system involved for the packet forwarding. However,
most devices still incorporate an operating system for control plane operations.

The designs of the ASICs are highly optimised for packet processing, which is
possible because they only have to perform packet forwarding. There are no wasted
clock cycles on non-packet forwarding tasks reducing the overhead. In current gen-
eration networking equipment, the work is highly parallelised [16]. A pipelined hard-
ware design enables parallel operation inside the system (e.g., the Intel Tofino see
sec. 3.3.1).

Fixed function ASICs lack re-programmability and transparency. P4 is an open-
source domain-specific language that aims to solve this problem by describing the
behaviour of networking hardware. P4 [17], in combination with P4-enabled switches,
offer high-performance re-configurable packet forwarding. The performance is in the
order of terabits per second. We describe the working and principle behind P4 in
more detail in sec. 3.3.1.

3.1. OPDP TYPES 17

3.1.2 Kernel-based

The kernel is the lowest level program in an operating system and has complete con-
trol over the system. It is responsible for tasks such as managing the interactions
between hardware and software, process scheduling, memory management, pe-
ripheral management, I/O operations, interrupt handling, networking [18] [19]. Thus,
the kernel performs the low-level tasks and management to offer generic interfaces
in the form of syscalls, file descriptors and sockets for higher-level user space appli-
cations.

For security reasons, there is a distinction between user and kernel mode. A
program loaded into kernel mode is privileged and can directly access hardware
and all other resources, e.g. user space programs. Within a computer’s memory,
there is a distinction between these two modes. Programs in kernel mode exist in a
separate virtual address space shared between all kernel programs, whereas user
mode programs each have their own virtual memory space. Kernel programs can
reference user programs but not the other way around.

Located inside the Linux kernel is the Linux network stack [20]. The network
stack handles the link, network and transport layer operations. Handling these layers
is not the only responsibility of the kernel; it also performs routing, forwarding and
filtering operations. Device drivers interface with the Network Interface Card (NIC)
and the kernel to send or receive packets.

Due to all the networking functionality inside the Linux kernel, it is not as perfor-
mant as it could be for given use cases. eBPF is a technology that allows developers
to attach custom programs to low-level kernel hooks [21], enabling the user to safely
deploy code within the Linux kernel space. eBPF is widely used to increase packet
processing speed or to add more customisation flexibility [22]. We explain eBPF and
its possibilities in more detail in sec. 3.3.2.

3.1.3 User Space-based

The kernel and user space programs communicate packets via a socket. The socket
acts as the boundary to cross kernel and user space. A user space program listens
on this socket for new packets or sends packets over it for the kernel to transmit.

The advantage of user space packet processing is that it offers the highest flex-
ibility out of all spaces. There are fewer restrictions and constraints from the hard-
ware or kernel; there are, e.g. no real-time deadlines. The developer is less re-
strained in programming language choice within the user space, and the code is
portable to different operating systems. An additional advantage of user space pro-
gramming is that there is less required knowledge of the lower-level networking op-
erations for developers since the kernel performs these operations.

18 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

Since a packet is always first processed by the kernel and only then by the user
space program, the user space program is less performant in packet processing
operations than the kernel. The performance decrease is logical since the packet
has already traversed the entire networking kernel stack. A context switch between
kernel and user mode additionally slows down the process [19]. A context switch
is costly for performance because of the required reload of registers, stacks and
address spaces.

A solution for this problem is Vector Packet Processing (VPP) [23] [24] and Data
Plane Development Kit (DPDK) [25] [26]. These solutions bring the NIC and its
operation into user space, removing the need for context switches. VPP/DPDK has
the disadvantage of needing to perform all low-level operations within the program
and making the NIC unavailable for the rest of the system. We do not consider
VPP/DPDK because of time limitations.

3.1.4 Hybrid-based

Besides deploying an OPDP in a dedicated space, combining the different spaces is
possible, resulting in a hybrid-based OPDP. Such a hybrid-based OPDP is achieved
by deploying multiple OPDP implementations in different spaces since a single OPDP
can not span over multiple spaces. An example would be to deploy a kernel-based
eBPG OPDP in parallel to a user space OPDP.

For example, a hybrid-based OPDP can combine the positive characteristics of
the used spaces. The lower level hardware or kernel-based OPDP would form a
fast path data plane where the user space OPDP could handle packets requiring
more advanced operations. The lower level OPDP receives the packets and forward
the unsupported packets (e.g., packets requiring reassembly operations) to a higher
level OPDP for processing the packet.

3.2 Open versus Closed Programmable Data Planes

We define open networking as a network infrastructure based on open-source pro-
grammable data planes. We believe that programmable state-of-the-art networking
technologies are essential for a production-ready open network and for deploying
new protocols such as SCION. The use of OPDPs can provide new network prop-
erties, such as the transparency, flexibility, energy efficiency and line rate required
for operating networks at scale, a requirement for, e.g. ISPs.

Open networking is unlike current fixed function networking equipment [27] which
are black-boxes. Vendors often supply networking equipment with closed-source
pre-installed software, which the user can only reconfigure to a certain degree.

3.3. PROGRAMMING LANGUAGES FOR OPDPS 19

The user is very limited in reprogramming or understanding the data plane of the
equipment itself, with the result that changes in functionality or the support for new
protocols are limited and in some cases impossible. The equipment is not only a
black-box concerning the functionality, but it is also a black-box with regard to the
metrics. Most current-generation networking equipment lacks real-time telemetry,
which is an issue concerning the openness and monitoring of the equipment [27].

With open networking, the network uses re-configurable code resulting in agile
programmable networks [28]. We expect the agile nature to positively influence the
experimentation and adoption of new protocols used within the Internet. Besides an
OPDP, an open control plane is also required to achieve the goals of open network-
ing.

3.3 Programming Languages for OPDPs

In this section, we explain the programming languages we use for implementing our
OPDPs. Other OPDP programming languages like, e.g. Rust are outside the scope
of our research. We start with P4 (sec. 3.3.1), a domain-specific language used
to describe hardware-based OPDPs. Next, we explain eBPF (sec. 3.3.2), a tech-
nology that enables the creation of kernel-based OPDPs. Finally, we explain XDP
(sec. 3.3.3) and TC (sec. 3.3.4), which are two specific types of eBPF networking
programs.

3.3.1 P4

Programming Protocol-independent Packet Processors (P4) [17] is a domain-specific
language for describing the behaviour of networking devices. We show P4 in fig. 3.1
as language to write hardware-based OPDPs. P4 is suited to describe the data
plane algorithms which can be compiled for multiple targets like Field Programmable
Gate Arrays (FPGAs), NICs, switches and software models. It achieves this by using
target-specific architectures and compilers whilst keeping the same language syn-
tax. Fig. 3.2 shows the general workflow for a P4 program. The developer writes a
P4 program (top purple block), and a compiler is used to generate an info file for the
control plane and a binary file for deployment on the P4 target (data plane).

P4 defines standard building blocks like headers, tables, actions, parsers, de-
parsers, match action units and externs. The availability and the exact functionality
of these building blocks depends on the P4 target architecture used. In fig. 3.3, we
show an example architecture and how the building blocks are combined to form the
pipeline. The architecture shown is of the Public Switch Architecture (PSA) [29], an

20 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

Figure 3.2: A high-level overview of the general P4 workflow. [17]

Figure 3.3: Overview of the components making up the PSA architecture. [31]

open-source architecture used in the Behavioural Model version 2 (BMv2) [30] soft-
ware switch. We describe the functionality of the different components in the bullet
list below.

We will now go over the different building blocks and describe their purpose:

• Headers define the packet’s header fields, possibly metadata, on a bit level.

• Tables store information, enabling state between packets in the data plane and
control plane. The control plane program fills the tables with data, e.g. routing
data. The data plane can match against these tables whilst operating at line
rate.

• Actions define the different possible packet operations to apply to the packet.
The operations range from dropping the packet to altering the bits in the parsed
headers.

• Parsers parse the incoming packets and make the information in the headers
available to the program. They can also skip and drop header bits.

3.3. PROGRAMMING LANGUAGES FOR OPDPS 21

• Deparsers function the same as parsers but perform after the parsing and logic
operations of the pipeline. They usually handle and remove specific metadata
still attached to the packet.

• Match action units are control blocks which use data in the parsed headers as
entries for table matching to determine what actions to perform on the packets.

• Externs are custom functions implemented in a target architecture to aid spe-
cific tasks. Examples of this are checksums and Cyclic Redundancy Check
(CRC) calculations.

P4 has a syntax similar to the C programming language and uses the build-
ing blocks mentioned above to describe the program’s behaviour. These high-level
constructs allow for easy experimentation and reconfiguring of the chip’s behaviour.
This flexibility is opposite to the current generation ASIC switches with vendor-locked
functionality.

The Intel Tofino [32] is a hardware ASIC-based switch with P4 compatibility with
throughput in the terabits per second range. Intel defined the Tofino Native Archi-
tecture (TNA) [33], a P4 architecture that provides a P4 programming interface for
Tofino switches. This specification is open-source, but for accessing in-depth docu-
mentation and Software Development Environment (SDE) releases signing an Non-
Disclosure Agreement (NDA) and Software License Agreement (SLA) is required.
Intel supports academic researchers through the Intel Connectivity Research Pro-
gram (ICRP). The bf-p4c compiler is the custom compiler required for compiling P4
code for Tofino.

Tofino can achieve the terabits per second line rate by utilising hardware-based
parallelisation. Fig. 3.4 shows the block diagram of the Tofino, where four different
pipes can be distinguished, labelled zero through three. Each of these four pipes is
attached to several physical ports and can be programmed independently of each
other. The Traffic Manager is a block that allows advanced operations on packets
between the pipes like recirculation, mirroring and replication. The Tofino also has
the capability of sending packets to the CPU. This feature can be helpful for further
packet inspection or handling edge cases on the CPU.

Fig. 3.5 shows the core software components and APIs used in the Tofino switch.
The control plane program uses these APIs to fill the match-action tables and con-
figure the Tofino settings and externs. In this figure, the SDE is not present. With the
SDE, developers can run their programs to simulate the behaviour and verify correct
functionality. The bf-p4c compiler is shown in fig. 3.5, which generates the binary
file for deployment on the Tofino hardware (under the Linux kernel line) and the files
necessary for configuring the APIs.

22 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

Figure 3.4: A block diagram of the Intel Tofino. It clearly shows the different pipes enabling the
parallelisation. [33]

TNA supports the following externs (custom functions) that could be of interest:
Checksum, Counter, CRCPolynomial, Meter, Mirror, Random and Resubmit. The TNA
public document [33] describes their workings in-depth.

When developing a P4 program for the Tofino, there is a big difference compared
to a software model like the BMv2 [30]. Being mapped to physical hardware adds
extra constraints on the design, but this also enables the orders of magnitude higher
throughput. Limited resources are one of these constraints. For example, TCAM or
SRAM memory stores the data of the P4 tables, but this resource is limited by the
amount present in the hardware. Another example of limited resources is the finite
amount of states available for the parser and deparsers and a finite parsing depth.
Besides limited resources, the hardware also has additional timing constraints it
has to meet. The SDE takes care of and checks the supplied program for these
constraints.

3.3.2 eBPF

eBPF is used to implement kernel-based OPDPs as shown in fig. 3.1. Traditionally
the kernel is hard to change because of its critical role and high requirements for
security and stability. eBPF (not an acronym [21]) is a technology that allows pro-
grams to run in a sandboxed environment inside the kernel. These programs can
be attached to the kernel at runtime without reloading kernel modules or recompil-
ing the kernel, resulting in the ability to augment the kernel’s functionality without

3.3. PROGRAMMING LANGUAGES FOR OPDPS 23

Figure 3.5: An overview of the different software components (APIs and compiler) of the Tofino
SDE. [34]

downtime. Executing the program sandboxed inside kernel space enables the ele-
vated permissions required for certain operations, like direct hardware access, whilst
guaranteeing kernel stability and security [21].

Linux kernel version 3.15 (2014) introduced eBPF into the kernel. eBPF is the
newer and extended version of the Berkeley Packet Filter (BPF) originating from
BSD in 1992 [35]. eBPF’s most significant changes were a 64-bit word size, an
increase in the number of registers, function calls, a 512-byte stack, the addition of
map storage and the capability to attach eBPF programs to different kernel hooks.
Adding different kernel hooks gives eBPF more functionality than BPF, which could
only perform network packet operations.

eBPF is an Instruction Set Architecture (ISA) combined with an in-kernel Virtual
Machine (VM). The VM allows dynamic reloading of the programs. The kernel
translates the instructions dynamically using Just in Time (JIT). The code can be
offloaded to specialised hardware, e.g. NICs or executed on the CPU. Registers
pass arguments to functions, allowing function calls to be one instruction. Table 3.1
shows the different registers and their function.

Register Description

r0 Stores function return value
r1-r5 Store function arguments
r6-r9 Preserve values between functions
r10 Stack pointer (Read-Only)

Table 3.1: eBPF registers and their functionality.

Fig. 3.6 shows a typical workflow for creating and running eBPF programs. The
compiler compiles the source code, typically written in a subset of the C program-

24 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

Figure 3.6: An overview of the eBPF workflow and the different components. [21]

ming language. The compiler checks if there are no unbounded loops, no use of
the standard library nor non-static global variables. The compilation results in an
Executable and Linkable Format (ELF) binary file ready to load in the kernel.

The verifier is responsible for checking the ELF object file for safety and integrity
reasons before allowing the code to execute. To start, the verifier determines if
the code is a Directed Acyclic Graph (DAG). Finding a DAG would guarantee the
program’s termination and enable the computation of the Worst-Case Execution
Time (WCET). Furthermore, the verifier checks if all function calls are to functions
with a General Public License (GPL) compatible licenses and checks all memory ac-
cesses. To ensure the kernel’s integrity and security, checking the memory bound-
aries is essential to remediate buffer overflow attacks or reading non-allowed mem-
ory [36]. The program is rejected and not executed if the verifier fails to check one
of these criteria.

An important concept in eBPF are so-called eBPF maps. eBPF maps are key-
value stores to persist data between program executions (packets in our context)
and to share data with other eBPF programs. These maps can be of different types,
from array maps and hash maps to Longest Prefix Matching (LPM) maps specific
to IP address matching. Besides eBPF programs, user space programs can also
access the maps enabling interaction between the user and kernel space. The user
space programs can retrieve, add, update and delete these entries.

eBPF programs can be attached to different hooks inside the kernel to augment
standard behaviour. This augmentation behaviour of eBPF has the advantage that
the kernel programs can run beside the user space programs allowing us to create a
hybrid SIG implementation. We are only interested in the eBPF network hooks since
our thesis focuses on accelerating the SIG using OPDPs. The available networking
hooks are XDP and TC. Fig. 3.7 gives a visualisation of the Linux network stack

3.3. PROGRAMMING LANGUAGES FOR OPDPS 25

Figure 3.7: Schematic overview of the Linux Network stack with eBPF networking hooks TC and XDP
shown. [37]

and eBPF hooks. Packets enter the Linux kernel via the network hardware and
are passed on to XDP in the device driver. XDP processes the packets if an XDP
program is attached to the interface. If XDP passes on the packet, the packet will
enter the network stack (biggest green box). There the packet arrives at TC the
second and last eBPF network hook.

3.3.3 XDP

eXpress Data Path (XDP) [37] is the lowest level networking hook, which means the
program executes directly after the NIC receives a packet. XDP defines a struc-
ture called xdp md containing pointers to the packet’s beginning and end memory
addresses. This data type is more barebones than the usual skb buff type used
inside the kernel because xdp md removes the dependency on the kernel network
packet parsing functionality. It also means that the XDP program has less informa-
tion at its disposal.

Return values of eBPF programs signal to the kernel what action to take. Ta-
ble 3.2 shows the possible return values an XDP program can have. For the SIG,
XDP PASS and XDP REDIRECT are of interest. XDP PASS signals that the packet should
traverse the networking stack as usual, whereas XDP REDIRECT signals that the packet
should redirect to another interface.

eXpress Data Path (XDP) introduces AF XDP in Linux kernel 4.18 [38], a new

26 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

XDP return values Description

XDP PASS Pass the packet onto the network stack
XDP DROP Drop the packet
XDP ABORT Drop the packet creating a kernel
XDP TX Retransmit the packet out of the interface
XDP REDIRECT Redirect the packet to the egress side of another interface

Table 3.2: The possible XDP return values and their meaning.

socket type. This socket allows XDP to create an in-kernel fast path to the user
space bypassing the Linux kernel network stack. XDP programs use XDP REDIRECT

to forward packets to the AF XDP. Applications must be adjusted to take advantage
of the AF XDP functionality.

There are three modes to deploy XDP programs. These modes are offloaded,
native and generic. In offloaded mode, the program executes on the NIC. Currently,
only Netronome NICs with the nfp driver support this mode [39]. In native mode, the
program executes using the CPU but does not require allocation of the skb buff.
The generic mode supports all NICs and interfaces since the required XDP code is
in the kernel. Generic mode is the least performant since a skb buff is allocated
for every packet. Offloaded and native modes are similar in performance, but the
offloaded mode has lower CPU utilisation.

3.3.4 TC

The Linux Traffic Control (TC) part of the kernel executes right after the XDP hook.
In TC, packets enter a queueing discipline (qdisc) to which rules, filters and policies
can be attached. There is a special qdisc for eBPF TC programs called clsact. The
clsact qdisc type allows the programs to hook into the ingress or egress side of the
network interface, whereas XDP programs can only be attached to ingress.

TC eBPF programs also have defined return values. Table 3.3 shows the pos-
sible return values and their description. A difference between XDP and TC is that
TC ACT REDIRECT can redirect the packet to either the ingress or egress side of the
other interface [36].

3.3. PROGRAMMING LANGUAGES FOR OPDPS 27

TC return values Description

TC ACT OK Pass the packet onto the networking stack
TC ACT SHOT Drop the packet
TC ACT PIPE Goto next TC action
TC ACT RECLASSIFY Start over the TC pipeline
TC ACT REDIRECT Redirect the packet to ingress or egress of another interface

Table 3.3: The possible TC return values and their meaning.

28 CHAPTER 3. OPEN PROGRAMMABLE DATA PLANES (OPDPS)

Chapter 4

Related Work on SCION and OPDP
Performance

To the best of our knowledge, at the time of writing, there has been no other research
into the performance of the SIG nor the acceleration of the SIG using OPDPs. There
have been performance studies on SCION border routers, OPDPs, and their combi-
nation, but not on the use of the SIG and OPDPs. Well-performing SIGs are particu-
larly important to couple the large existing IP networks with emerging SCION-based
networks.

In the following sections, we will elaborate on work done on benchmarking the
SCION performance (sec. 4.1) as well as performance optimizations using kernel-
based OPDPs (sec. 4.2) or hardware-based OPDPs (sec. 4.3).

4.1 SCION

Chandrashekar and Riaz [40] researched the performance of SCION on VMs and
compared the results to IP routed traffic. The VMs were part of the SCIONLab
network and were connected using direct gigabit links. Chandrashekar and Riaz
measured a reliable SCION throughput of 150 megabits per second.

Gartner mentions a throughput of 600 megabytes per second in his master thesis
”Improving SCION Bittorrent with efficient Multipath Usage” [41]. Gartner achieved
this using multiple connections over a 10 gigabit per second direct link using a dep-
recated high-speed border router implementation of Anapaya.

Wagner measured a baseline throughput of 1.2 gigabits per second in his thesis
”Improving Packet Processing Speed on SCION Endhosts” [10]. Wagner performed
the measurements in a similar environment compared to Gartner. The servers were
equipped with an Intel Xeon Silver 4114 CPU with 10 cores running at 2.20 GHz,
and 48 GB of DDR4 RAM at a clock rate of 2666 MHz. The measurement was also

29

30 CHAPTER 4. RELATED WORK ON SCION AND OPDP PERFORMANCE

over a 10 gigabit per second direct link using the old Anapaya high-speed border
router. Wagner argued that the performance increase compared to Gartner’s result
is due to not having the BitTorrent overhead.

4.2 XDP and TC

Wagner [10] used XDP to accelerate the SCION dispatcher and was able to quadru-
ple the measured throughput. Wagner increased the throughput from 1.2 gigabits
per second to 4.6 gigabits per second.

Schulz and Hausheer [42] created an XDP implementation to accelerate the per-
formance of the SCION border router. Schulz and Hausheer perform the MAC veri-
fication that involves Advanced Encryption Standard (AES) inside eBPF.

Neukom achieves SCION file transfer speeds at nearly 100 gigabits per second
in his master thesis [43]. Neukom uses the Hercules protocol and AF XDP sockets
on a high-performance testbed using 100 gigabits per second direct links. AF XDP

sockets are used to bypass the Linux network kernel and the SCION dispatcher.
Neukom mentions neither the exact topology nor the use of a SCION border router.

NLnet Labs performed several XDP and TC experiments to accelerate and aug-
ment Domain Name System (DNS) and wrote a collection of blogs about their exper-
iments [22]. The code of the experiments is available in their GitHub repository [44].
They do not quantify their performance gains.

CloudFlare uses XDP to drop packets at wire speed to further increase Distributed
Denial of Service (DDoS) protection [45]. XDP allows them to drop the packets ear-
lier in the packet processing pipeline, saving CPU resources.

Lee’s presentation ”Faster Packet Processing in Linux: XDP” [46] at the Samsung
Open Source Conference (SOSCON) gives a quantitative comparison between the
packet processing option in Linux comparing user space, Netfilter, TC and XDP.
They could drop 783.063, 1.226.730, 4.083.820 and 9.941.337 packets per second,
respectively, clearly illustrating the performance gains.

4.3 P4

Součková implemented the SCION border router for a NetFPGA [47] using P4.
Součková describes this in her master thesis, ”FPGA-based line-rate packet for-
warding for the SCION future Internet architecture” [48] and achieves a line rate of
10 gigabits per second. The code is available on GitHub [49]. However, it is not
actively maintained.

4.3. P4 31

De Ruiter and Schutijser created an open-source implementation of the border
router for the Intel Tofino [50]. In their paper ”Next-generation internet at terabit
speed: SCION in P4” [51] they describe that the switch can run at terabits per sec-
ond line rate. They made this possible by adapting the SCION protocol header
definition to better suit hardware switching. These changes were adopted by the
official protocol specification.

Van Hove presents a hybrid routing option based on software and hardware
routed in ”P4 Hybrid Routing for Next-Generation Networks Experimentation based
on Open Source Software Defined Routing” [52]. Van Hoven uses existing routing
software to fill the P4 tables with routing information and tests them in two use cases.

32 CHAPTER 4. RELATED WORK ON SCION AND OPDP PERFORMANCE

Chapter 5

OPDP-based Implementations of the
SIG

In this chapter, we explain the prototypes we created to accelerate the performance
of the SIG using OPDPs. The prototype must interoperate with the existing SIG im-
plementation and framing protocol. This compatibility is essential for the accelerated
SIG to function outside a controlled test environment.

We start this chapter with the required operations for the data plane of the SIG
(sec. 5.1). Then, we explain the P4 design created for the Intel Tofino (sec. 5.2),
after which we will discuss the XDP OPDP (sec. 5.3). Finally, we explain the TC
OPDP prototype (sec. 5.4), which we used for our measurements.

5.1 Requirements

From a functional perspective, our OPDP-based implementation needs to provide
the SIG functions we outlined in sec. 2.4. The six key functions are:

• Receive IP packets.

• Put the IP packets in SIG frames.

• transmit SIG frames.

• Receive SIG frames.

• Retrieve IP packets (possible from multiple SIG frame).

• Send out IP packets.

The OPDP-based SIG also has non-functional requirements. As stated in the
SCION book [5], all legacy traffic into (or out of) a SCION AS passes through the

33

34 CHAPTER 5. OPDP-BASED IMPLEMENTATIONS OF THE SIG

SIG service through IP routing rules. Since all the legacy traffic is routed through
the SIG, it must be fast to keep up with the packet flow whilst being robust and able
to handle packet loss. Furthermore, the SIG functionality should be flexible, e.g. it
should detect path changes.

5.2 Hardware-based Implementation using P4

We started with a design for the Intel Tofino since this would likely result in the most
significant performance increase (see sec. 3.1). A downside of implementing the
SIG in P4 is that we must create all the functionality from scratch since there is no
user space implementation running in parallel as there is with the eBPF designs. In
retrospect, a hybrid design might even be possible; we discuss this in sec. 8.1.

In order to create the prototype, we started with a design experiment for the first
requirement. The experiment was to isolate a specific part of the packet payload.
With isolation, we mean removing parts of the front and back of the packet’s payload
resulting in a specific piece of the payload. This behaviour is required for the SIG to
decapsulate framed IP packets. An example of this requirement would be isolating
packet P1 in fig. 2.6 since that frame contains the beginning of packet P2. Therefore,
removing the beginning part of packet P2 from the frame is necessary to successfully
decapsulate packet P1.

We successfully isolated specific parts of the packet payload. However, the range
(number of bytes we could remove) of the operation was limited, resulting in that we
could not isolate small packets in the middle of the payload of a SIG frame. We
concluded that the hardware-based P4 platform does not provide the featureset we
need to implement the SIG framing protocol since we were not able to perform the
fragmentation and reassembly operations. This mismatch resulted in us stopping
with the OPDP SIG prototype implementation in P4, and we further focused on an
eBPF-based implementation. In sec. 8.1, we discuss the mismatch more thoroughly.

5.3 Kernel-based Implementation using XDP

Since XDP is the lowest level eBPF networking kernel hook, we start by making
an XDP-based implementation. We give an overview of the architecture in fig. 5.1,
which clearly illustrates the fast path. Another thing to notice in the figure is that the
XDP program runs parallel to the user space SIG. The parallel deployment has the
advantage of not having to cover all edge cases since we can pass packets from
the unsupported cases to the user space SIG. The parallel operation enables us to

5.3. KERNEL-BASED IMPLEMENTATION USING XDP 35

create a hybrid design between user and kernel space, implementing a fast path for
most packets.

Figure 5.1: XDP prototype architecture clearly illustrating the fast path using XDP REDIRECT.

To clearly illustrate the logic of our OPDP prototype, we created a flow diagram
shown in fig. 5.2. The left and right flows represent the logic applied to the Ethernet
and SIG interfaces, respectively. We will use the number and letter markings of the
flow graph in our explanation. From a high-level, the Ethernet interface receives
and decapsulates the SCION packets. Conversely, the SIG interface receives and
encapsulates the IP packets. The error handling consists of passing on the packets
to the user space SIG, ’PASS’ in the flow diagram. The current design can only
fast-track SIG frames containing a single entire IP packet. We will now describe the
steps in more detail.

The SCION side (on the left) starts by parsing the Ethernet (1), IP (2) and UDP
(3) headers and checks if the UDP port number signals a SCION payload. Next,
we parse the SCION common header (4) and skip over the variable length address
and path headers using the header length information from the common header.
We then check for a SCION/UDP header (5) and parse if present to see if the port
number signals a SIG frame header.

If we find a SIG frame, we parse it and check the index number to see if it is set to
zero (6), indicating that at the start of the payload is an IP packet. If that is the case,
we can parse the IP header and check if the destination IP address of the packet
indicates an in or outgoing SIG frame (7). For an outgoing SIG frame, we check if
the key (destination IP address) is new for the map (8). If this is the case, the packet
contains new header information, which can be used at the SIG side to encapsulate
IP packets. Therefore, we add the raw bytes of the Ethernet, IP, UDP and SCION

36 CHAPTER 5. OPDP-BASED IMPLEMENTATIONS OF THE SIG

Figure 5.2: Flow diagram for the XDP prototype illustrating the logic and performed actions for both
interfaces. The left flow is for the Ethernet interface and the right flow for the SIG interface.

5.3. KERNEL-BASED IMPLEMENTATION USING XDP 37

headers as value to the map (9) using the destination IP address as the key and
pass the packet out of the interface. For an incoming SIG frame, we check if the
entire IP packet and only one IP packet is contained in the frame (10). We check
this by comparing the packet’s total length to the total parsed header size combined
with the payload size indicated in the framed IP header. If this is the case, we strip
the encapsulated IP packet from the lower level header and redirect the packet to
the SIG interface (11).

Now turning our attention to the right-hand side of the diagram, the SIG interface
handling IP packets parses the packet’s IP header (A) and checks if the packet is
incoming or outgoing using the destination address (B). If the packet is outgoing,
we check if the key (destination address) is found in the map (C). If a match exists,
the bytes stored in the map are used to encapsulate the packet (D), and then we
redirect the packet to the Ethernet interface.

Our design is user space agnostic since the eBPF implementation fills the map
required for encapsulation by parsing outgoing packets inside the kernel space.
Therefore, there is no dependency on the user space implementation of the SIG.
The self-learning design enables compatibility with running in parallel to other future
user space implementations. Accordingly, the design not only fulfils the requirement
of being compatible with the current implementation, it even is compatible with future
implementations.

We have created a user space helper program for our design. The program pe-
riodically loops over the map entries assigning a Time To Live (TTL) to new entries
and deleting entries with an expired TTL. This feature enables updating the map
entries since otherwise, the learned MAC inside the SCION header would become
invalid. The program also dynamically loads the interface index into a map deter-
mined by the interface name. The dynamic reloading is useful because the interface
index may change. The eBPF program uses this index for the redirect operation.

We did the initial development of the design on our laptop and used tcpreplay

[53] to mimic the incoming packets on both interfaces. In that setup, we made a
working OPDP prototype. However, we encountered issues once we deployed the
prototype to the testbed. Packets would not appear in XDP; hence they could not
be redirected. The problem was that XDP is only attached to the ingress side of
the interface. Therefore it did not see packets leaving the interface. tcpreplay sent
all the captured packets (incoming or outgoing) to the ingress explaining why we
overlooked the issue during development.

Fig. 5.3 shows the ingress and egress flow directions for our two interfaces. XDP
programs not capable of attaching to the egress side of interfaces was not our only
problem. Forwarding packets from the Ethernet ingress to SIG ingress was also
problematic since ingress to ingress redirection is currently not supported in XDP.

38 CHAPTER 5. OPDP-BASED IMPLEMENTATIONS OF THE SIG

Figure 5.3: Overview of the ingress and egress direction for both interfaces.

XDP developers are working on adding ingress to ingress redirection and egress
attach points [54]. However, the functionality was not available at the time of writing.
As a result, we changed our approach slightly, which we will explain next.

5.4 Kernel-based Implementation using TC

Since ingress to ingress redirection and the program’s attachment to egress hooks
are required and because XDP is not capable of doing that, we switched to using
TC. TC allows us to attach programs to the ingress and egress side of the interface
and redirect packets to either from another interface.

Luckily porting our XDP OPDP to use the TC hook was relatively straightforward
since both designs are eBPF programs. We changed the xdp md struct to skb buff

and some bpf helper functions. The main change was splitting the logic per inter-
face into ingress and egress programs. A benefit was that the ingress and egress
split removed the necessity to check whether the packets were incoming or outgoing
on the interface, further simplifying the programs.

We find the direction for ingress and egress of the two interfaces a bit confusing
since they seem mirrored for the two interfaces. We assume that the SIG interface
has the ingress and egress side based on the perspective of the socket. We illustrate
in fig. 5.3 how the ingress and egress are defined together with the traffic flow per
interface.

Fig. 5.4 contains our updated flow diagram. The main difference is that we split
the program’s functionality to ingress and egress for each interface. The split re-
moves the need to check if the IP destination address is in the local range (step (7)

in fig. 5.2). We can now directly check if the SIG frame contains only an entire single
IP packet (7), after which we strip the headers and perform a redirection to the SIG

5.4. KERNEL-BASED IMPLEMENTATION USING TC 39

Figure 5.4: Flow diagram for the TC prototype illustrating the logic and performed actions for the
attached TC programs. The left flow is for the Ethernet ingress, the middle flow is for the Ethernet
egress and the right flow for the SIG egress.

40 CHAPTER 5. OPDP-BASED IMPLEMENTATIONS OF THE SIG

interface. Alternatively, for the egress side, we check if the IP destination address
key is new for the map (VII). If the key is new, we add the raw header bytes to the
map and add the sequence number of the packet to the sequence map (VIII).

We created a secondary map for storing the SIG sequence numbers since we
need to increment the SIG frame sequence field for every packet we send. Addition-
ally, we update the IP length, IP checksum, UDP length and UDP checksum fields
(D) in order to match the length of the new packet. These changes are necessary
since the map entry could be filled with header data from a packet of a different size,
causing errors due to header fields indicating wrong lengths. We set the value of the
UDP checksum to 0 to bypass the kernel checks since this checksum includes the
payload. In sec. 8.3, we discuss the consequences of the bypass.

To summarise, the four (ingress and egress for two interfaces) programs have
the following functionality:

• The Ethernet ingress decapsulates the incoming SIG frames and redirects the
decapsulated packets to the SIG ingress.

• The Ethernet egress checks the outgoing SIG frames and stores the header
bytes for new map keys (destination IP address).

• The SIG ingress does nothing.

• The SIG egress checks for the presence of the key (IP destination address) in
the map. If found, it encapsulates the packet with the bytes from the map and
redirects the packet to the Ethernet egress.

Chapter 6

Measurement Methodology

The goal of our measurements is to evaluate the performance of the TC-based
OPDP we implemented (see sec. 5.4). To start, we explain the performance pa-
rameters we use for the measurements (sec. 6.1). After that, we explain our mea-
surement setup (sec. 6.2) and measurement traffic and scenarios (sec. 6.3). Then
we discuss the tooling we use for our measurements (sec. 6.4). Finally, we explain
how we make the measurements reproducible (sec. 6.5). We use our methodology
for our measurements of the TC-based SIG in chapter 7.

6.1 Performance Parameters

The main criteria we use to measure the performance are the Round Trip Time (RTT)
and the throughput between two SIG instances. We give a high-level overview of two
SIGs in fig. 2.5.

The RTT consists of the network latency and the processing delay. The network
latency will be constant and significantly smaller than the processing delay as we
use a virtualised testbed (see sec. 6.2). The distance between the nodes typically
contributes to the network latency; however, in our case, the virtualisation driver
determines the network latency. The virtualisation driver acts as the switch forward-
ing the packets between the VMs. The processing delay is the most interesting to
us since the SIG implementation influences the processing delay. The goal of our
acceleration is to reduce the processing delay, which would result in a reduction
in the RTT. End-hosts would, e.g. notice the delay reduction when establishing a
connection.

We define throughput as the rate of successfully received bits at the measure-
ment point. We use the throughput to determine the maximum packet forwarding
speed of the SIG. The throughput is of interest since the traffic of many end-hosts
will be routed through the SIG. Therefore, if the SIG is not able to handle high

41

42 CHAPTER 6. MEASUREMENT METHODOLOGY

throughput, it would cause congestion in the network.
Additionally, we measure CPU utilisation. We use CPU utilisation to determine

any bottlenecks in the system. Besides bottlenecks, utilisation also determines the
efficiency of the system. If two implementations achieve the same RTT and through-
put, a lower CPU utilisation is preferred to save on computing resources.

We monitor the packet loss since a high packet loss is not desirable. Packet loss
might result in required retransmissions, thus wasting networking resources. Packet
loss could e.g. occur if the user space SIG drops packets due to sequence number
errors.

6.2 Measurement Setup

Our goal for the testbed setup was to create the minimal topology required for mea-
suring the performance of two SIGs whilst avoiding possible bottlenecks and ruling
out the effects of the network. Fig. 6.1 gives an overview of our virtualised testbed.
Our testbed consists of two ASes, the blue boxes in the figure, and each AS con-
sists of two VM. We use two ASes since a SIG is not required for communication
within a single AS. The SIG is not required because hosts can directly communicate
inside a single AS without needing SCION as the inter-domain routing protocol. For
simplicity, we used one ISD with one of the two ASes forming the ISD core.

Figure 6.1: Schematic overview of the testbed design with the four VMs and the different components
within each VM. The arrows indicate the communction between components whereas the dotted line
symbolyses the communication between the SIGs.

Each AS contains a Border Router (BR) and a SIG host, the green and orange

6.3. SCENARIOS FOR MEASUREMENT TRAFFIC 43

boxes in the figure, respectively. The BR hosts contain a Control Service (CS),
a SCION daemon, a dispatcher and a BR. The CS performs the control plane
operations for the AS, whereas the daemon performs these operations for the host.
The control plane operations include path, beaconing and certificate operations. The
dispatcher is responsible for receiving incoming SCION packets and delegating the
packets to the different SCION components. The BR forwards the SCION packets
between the ASes. We explain the SCION components in more depth in sec. 2.3.

The SIG hosts (orange) contain the dispatcher and daemon for the host connec-
tivity. These components have the same functionality as in the BR hosts. Addition-
ally, a SIG or OPDP SIG is deployed inside each SIG host. The SIG encapsulates
the IP traffic and forwards it to the other SIG indicated with the dotted line. However,
the actual packet path from SIG-1 to SIG-2 would be via BR-1 and BR-2. We show
this path with the red arrows in fig. 6.1. From SIG-2 to SIG-1, the path would be the
arrows pointing in the other direction.

We deploy the SIGs inside their own VMs to reduce the possible bottlenecks
caused by the BR or CS using CPU resources. The daemon and dispatcher are
required for SCION connectivity in the SIG hosts. Whereby we cannot isolate these
two components out of the SIG hosts to reduce possible bottlenecks.

We have opted for a virtualised environment to minimise network latency and
increased reproducibility. Our setup enables us to measure the performance of the
SIG and OPDP SIG in a controlled and isolated environment. Additionally, it allows
for easy deployment and reconfiguration for faster development cycles.

The functionality and deployed SCION components in the testbed ASes are the
same as for a SCION-based Internet. However, the small topology with only two
ASes with one path option is not representative of a SCION-based Internet. In
sec. 8.2 we further discuss the representativeness of our testbed.

6.3 Scenarios for Measurement Traffic

We define five scenarios for our measurements and discuss why we chose them.
Furthermore, we explain the packet flow path per scenario. We perform all the mea-
surements in chapter 7 on the SIG-1 host from fig. 6.1. After defining the scenarios,
we explain the traffic distribution used per experiment and why we chose it.

The five scenarios are:

1. IP: A native IP connection between the two SIG hosts (SIG-1 and SIG-2 fig. 6.1).
The packet path is directly from SIG-1 to SIG-2 using the 10.0.0.20 and 10.0.0.40
IP addresses. The goal of this scenario is to determine the performance of the
underlying IP network. However, there is a difference since this scenario routes

44 CHAPTER 6. MEASUREMENT METHODOLOGY

the traffic between the two SIG nodes directly, whereas the other scenarios are
routed through the BRs.

2. SCION: A native SCION connection between the two SIG hosts. The packet
path is from the SIG host via the two BR hosts to the other SIG host (e.g. SIG-
1 → BR-1 → BR-2 → SIG-2 in fig. 6.1). The SIG functionality to encapsulate
IP packets is not used since the connection utilises native SCION. This sce-
nario aims to determine the performance of the SCION BRs because the BR
performance determines the lower limit (RTT) and upper limit (throughput) of
the SIG measurements since the SCION packets are routed through the BRs.

3. US-SIG: The SIG scenario is between the two SIG hosts with the user space
SIG implementation deployed in hosts SIG-1 and SIG-2. This scenario allows
us to determine the baseline performance of the existing SIG implementation.
We use this scenario to determine the performance increase of our accelerated
OPDP SIG. The packet path from SIG-1 to SIG-2 for the SIG scenarios is
indicated by the red arrow in fig. 6.1.

4. TC-SIG1: The interoperable SIG scenario is identical to scenario three with the
difference that we deploy our TC-based SIG in the SIG-1 host. The SIG-1 host
is the host where we perform our measurements. That is why we deployed our
TC-based SIG in that host since it allows us to measure CPU utilisation of our
TC-based SIG whilst interoperating with the user space SIG. This scenario
allows us to verify interoperability between our TC-based SIG and the existing
user space SIG implementation, and it allows us to determine the performance
gain. The interoperability is essential since, in a global SCION deployment,
there are no guarantees that the TC-based SIG would be deployed in the other
ASes.

5. TC-SIG1+2: The accelerated SIG scenario is identical to scenario three and
four except that we deploy our TC-based SIG in both SIG hosts (SIG-1 and
SIG-2). Deploying the TC-based SIG in both hosts allows us to determine the
maximum performance gains made by our implementation.

Now that we have defined the different scenarios we use for our measurements,
we will explain the traffic characteristics per experiment type. First, we vary the
packet size from 100 bytes to 1300 bytes for the RTT and throughput experiments.
We do this to increase our experiments’ representativeness since packets on the
Internet are not of a fixed size. We perform measurements separately on specific
sizes. After the measurement for a specific size is collected, only then do we in-
crease the size. This step-wise increase allows us to determine the performance for

6.4. MEASUREMENT TOOLS 45

specific packet sizes; however, the downside is that the traffic is not mixed, which is
the case for the Internet.

We aim to measure the RTT of the system under load for the RTT experiments.
We perform the measurements under load since a deployed SIG by, e.g. an ISP
would also be under load, increasing the representativeness of our experiment.
The load on the system is achieved by sending Internet Control Message Proto-
col (ICMP) packets as fast as possible. Therefore the send and receive rates vary
depending on the scenario’s processing delay. The ICMP ping requests are sent by
SIG-1 to SIG-2 where SIG-2 will reply to SIG-1 with ICMP ping responses. Addition-
ally, SIG-1 is able to determine the packet loss by the amount of not received ping
responses versus sent ping requests.

We send UDP packets with a specific size from 100 bytes to 1300 bytes as fast
as possible for the throughput experiment to determine the maximum forwarding
speed. We used UDP for the tests since we ran into performance issues whilst
using the Transmission Control Protocol (TCP); we discuss these TCP limitations in
sec. 8.3. SIG-1 initiates the throughput tests where SIG-2 has the responsibility of
being the throughput test server. The speed tests are performed in duplex, meaning
that both SIG hosts transmit packets.

We repeat the RTT and throughput for the specific sizes 100 times to increase
accuracy and determine the measurement error.

6.4 Measurement Tools

We used frequently used tools for our measurements. Ping [55] is the industry stan-
dard for RTT measurements, whereas, for throughput measurements, it is iPerf [56].
These tools’ advantages are that ping is preinstalled on most systems, and iPerf is
widely available, increasing the reproducibility of our measurements. Additionally,
both tools have built up credibility since they have been widely available and used
for RTT and throughput measurements.

For the RTT measurements, we specify the packet size, packet count, flood flag,
and preload amount using ping command line parameters. The flood flag enables
ping to send a request as soon as it receives a response. The preload flag deter-
mines the number of allowed outstanding requests allowing us to increase the load
on the system. We empirically determined the preload size to be 65 by increasing
the value until incoming requests would be dropped for the IP scenario due to an
overflowing receive buffer at SIG-2. We set the packet count to 50,000 for each ex-
periment per packet size. Three factors influence the choice for this value. Firstly the
higher the count, the more accurate the measurement. Secondly, the count needs
to be high enough for the experiment to have a sufficient duration of multiple sec-

46 CHAPTER 6. MEASUREMENT METHODOLOGY

onds to determine the CPU utilisation accurately. Finally, the value must not be too
high since all experiments are performed 100 times for 13 packet sizes and would
otherwise take too long.

We use iPerf3 [56], the newest version of the iPerf tool, for the throughput mea-
surements. We specify the UDP flag, size flag and an arbitrarily high target band-
width to perform our experiment. The target bandwidth needs to be set; otherwise,
iPerf3 will default to a one megabit per second test. The tool reports the successfully
received packet throughput. We use this value as the result of our measurement.

We use pidstat [57] to measure the CPU utilisation during the experiments. Pid-
stat polls the CPU usage once per second. Therefore each experiment should run
for several seconds to achieve an accurate measurement.

The tools used to perform the native SCION experiments are the SCION ping
and SCION bwtester [58] tools. The SCION ping command does not have all the
functionality the native ping command has. Out of the box, it did not return the mini-
mum, maximum and standard deviation of the RTT nor did it have a flood or preload
option. The minimum interval between packets had a minimum of one millisecond.
Therefore, we patched the SCION ping command and were able to remove the in-
terval limit and add the missing RTT statistics. This patch allowed us to approach
behaviour similar to the native ping, only missing the feature of the preload option.
Missing the preload option could result in less load on the system during the mea-
surements.

6.5 Reproducibility

We scripted the VM testbed topology using Vagrant for reproducibility and used
VirtualBox [59] as the backend to run the VMs. Vagrant [60] is a tool for building
and maintaining portable virtual software environments. The VMs are assigned four
CPU cores and 6GB of ram each. We automated the deployment and building
process of SCION using Bash scripts for easy deployment and a further increase in
reproducibility.

We deployed the testbed on an HP ProLiant DL360 Gen 10 equipped with a
Xeon Gold 5122 running at 3.7 GHz and 32 GB of RAM. However, the testbed
can be deployed with minimum effort on different hardware. The results’ absolute
value would differ due to the different computational resources. However, we expect
that the relative results of the experiments should still be valid on other testbed
hosts. Our experiments found that the SCION components are limited by the CPU,
whilst the hosts used less than 1 GB of RAM. Therefore, a testbed host with less
available RAM would still be suited for deploying the testbed. We discuss the CPU
dependency in sec. 7.3.

Chapter 7

Experiments with a TC-based SIG

In this chapter, we evaluate the performance of our TC-based SIG using the method-
ology discussed in chapter 6. We start with the RTT experiments (sec. 7.1) for the
five scenarios of sec. 6.3 to determine the processing delay gains. Next, we anal-
yse the throughput for the different scenarios of sec. 6.3 to determine the maximum
packet forwarding speed (sec. 7.2). Then we analyse the CPU utilisation (sec. 7.3)
and finally the packet loss (sec. 7.4) for the RTT experiment. We only discuss the
CPU utilisation for the RTT experiment since the utilisation results are comparable
for the throughput experiment. We do not discuss the packet loss of the throughput
experiments since iPerf3 does not report packet loss.

7.1 RTT

As discussed in chapter 6, we perform the RTT experiment by sending ping packets
as fast as possible between the SIG-1 and SIG-2 hosts. We perform the experiment
for five different scenarios and different packet sizes. Furthermore, we repeat the
measurement 100 times to increase accuracy and to facilitate the calculation of the
standard deviation.

The names in the legends of the figures correspond to the bold names of the
scenario bullet list in sec. 6.3.

The first RTT results we discuss are the average measured values for the differ-
ent packet sizes. The value for each size is calculated by taking the average RTT of
the 50,000 packets over the 100 measurement repetitions.

We expect the TC-SIG1+2 measurements average RTT to be lower than the
US-SIG and TC-SIG1 scenario. The TC-SIG1 scenario measurements should be
between the TC-SIG1+2 and US-SIG measurements since the scenario only utilises
half the acceleration. IP and SCION RTT values should be lower than the SIG and
TC-SIG1+2 scenarios since the SIG protocol is built on top of those network layers.

47

48 CHAPTER 7. EXPERIMENTS WITH A TC-BASED SIG

We show the results in fig. 7.1. TC-SIG1+2 (purple line) has a higher average
RTT than the US-SIG (red line) for packet sizes smaller than 500 bytes. Yet, TC-
SIG1+2 shows a constant relation to an increase in packet size, whereas US-SIG
RTT increases linearly. TC-SIG1 (grey line) shows a linear increase just as the US-
SIG. However, the linear increase of TC-SIG1 has a smaller slope than US-SIG
resulting in smaller RTTs than US-SIG for larger packet sizes. Yet, at a packet size
of 1300 bytes, TC-SIG1 shows similar behaviour to the US-SIG. After inspecting
logs and packet captures, we conclude that our TC-based SIG implementation is
bypassed. Our implementation is bypassed at a packet size of 1300 bytes due to
the fact that the user space SIGs at both hosts (SIG-1 and SIG-2) fragment the
encapsulated IP packets over multiple SIG frames. The baseline measurements, IP
(dotted blue line) and SCION (dotted brown line) achieve lower average RTTs as
expected.

0 200 400 600 800 1,000 1,200 1,400
0

2

4

6

8

10

12

Packet size (Bytes)

R
TT

(m
s)

(lo
w

er
is

be
tte

r)

Average RTT

IP SCION US-SIG TC-SIG1 TC-SIG1+2

Figure 7.1: Average RTT for flooded ping traffic measured for different packet sizes. Each size is
tested with 50,000 packets and repeated 100 times. The error bars indicate the standard deviation.
TC-SIG1+2 (purple line) shows a constant relation whereas the US-SIG (red line) shows a linear
relation to increase in packet size.

7.1. RTT 49

The US-SIG packet size dependence could be caused either by an enforced copy
operation of the packet data between user space and kernel space or an operation
in the user space program. The constant behaviour of TC-SIG1+2 can be explained
by the fact that no operation in our TC-based SIG implementation relies on packet
size. The less steep slope of TC-SIG1 results from the constant OPDP SIG and the
steeper sloped SIG deployed at the hosts.

We determine the minimum RTT by taking the minimum value per measurement
(1 out of 50,000) and averaging that over the 100 experiment repetitions. We expect
the same relative behaviour as for the average RTT. The expected behaviour is
US-SIG having the longest RTT, then TC-SIG1 followed by TC-SIG1+2, after which
SCION and finally IP with the shortest RTT.

We show the calculated minimum RTTs in fig. 7.2. Our expectations were con-
firmed, except that TC-SIG1+2 (purple line) achieved an even lower minimum RTT
than SCION (brown dashed line). A lower RTT is possible for TC-SIG1+2 since the
packets do not need to go through the dispatcher. TC-SIG1 shows the same re-
sult as the SIG for a packet size of 1300 bytes for the same reason (TC-based SIG
bypass) as with the average RTT results.

0 200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Packet size (Bytes)

R
TT

(m
s)

(lo
w

er
is

be
tte

r)

Minimum RTT

IP SCION US-SIG TC-SIG1 TC-SIG1+2

Figure 7.2: Minimum RTT measured for different packet sizes. The value is calculated using the
minimum value out of 50,000 packets and averaging it over the 100 measurement repetitions per
packet size. The error bars show the standard deviation. Low RTT values are the desired outcome.

50 CHAPTER 7. EXPERIMENTS WITH A TC-BASED SIG

The maximum RTT values are determined using the maximum RTT per mea-
surement (1 out of 50,000) and averaged over 100 measurement repetitions. We
perform the calculation for each packet size. We expect the same relative distribu-
tions for the maximum RTT measurements as we did for the minimum and average
RTTs.

In fig. 7.3 we show the maximum RTT results. The measured SCION values
are significantly higher than the others. We suspect this is caused by the modified
SCION ping tool being less optimised than the IP ping tool. This statement is backed
by the fact that none of the SIG scenarios has measured such a high maximum
RTT whilst relying on the same SCION network. Besides the SCION results, the
other results are in line with expectations, with TC-SIG1+2 achieving lower maximum
RTTs than US-SIG and TC-SIG1. TC-SIG1 once again shows behaviour similar to
US-SIG for a packet size of 1300 bytes.

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

250

Packet size (Bytes)

R
TT

(m
s)

(lo
w

er
is

be
tte

r)

Maximum RTT

IP SCION US-SIG TC-SIG1 TC-SIG1+2

Figure 7.3: Maximum RTT measured for different packet sizes. Each maximum is 1 out of 50,000
packets averaged over 100 measurement repetitions. The error bars show the standard deviation.
Low RTT values are the desired outcome. The maximum SCION RTT measurements should not be
this high and are probably caused by inefficiencies in the patched SCION ping command.

7.2. THROUGHPUT 51

7.2 Throughput

In this section, we determine the maximum throughput for the scenarios defined
in sec. 6.3. We define throughput as the rate of successfully received data at the
measurement host (SIG-1). The names in the figure legends correspond to the
bold names in the scenario bullet list (sec. 6.3). We determine the throughput in
three different ways. Firstly, we analyse and discuss the results achieved from the
scion-bwtester. Then we discuss the calculated throughput using the RTT experi-
ments data. Finally, we discuss the results of the iPerf3 measurements.

The forwarding speed of the SCION network will be dictated by the SCION BRs
and the receive rate of the SCION dispatchers. We perform the scion-bwtester

measurement to achieve the maximum throughput of the SCION forwarding plane
for the different packet sizes. The scion-bwtester has packet size and attempted
throughput as input parameters and returns the achieved throughput.

In fig. 7.4 we plot the maximum throughput for the different packet sizes. SCION
is able to achieve a throughput of roughly 200 megabits per second for a packet
size of 1300 bytes. However, SCION is only able to achieve a throughput of roughly
20 megabits per second for a packet size of 100 bytes caused by a limitation in the
SCION dispatcher or BR.

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

Packet size (Bytes)

Th
ro

ug
hp

ut
(M

b/
s)

(h
ig

he
ri

s
be

tte
r)

Maximum Throughput For The scion-bwtester

SCION

Figure 7.4: Maximum throughput results for the scion-bwtester per packet size. This figure indi-
cates the maximum forwarding speed of the SCION network dictated by the SCION BRs

52 CHAPTER 7. EXPERIMENTS WITH A TC-BASED SIG

Since we sent the ping packets as fast as possible for the RTT experiment, we
can calculate the maximum throughput for that test. We calculate the throughput in
megabits per second using the following formula:

throughput = packetcount∗packetsize(bits)
duration(seconds)

∗ 1
1024∗1024

We expect TC-SIG1+2 to achieve higher maximum throughput than US-SIG. TC-
SIG1+2 throughput should be close to 200 megabits per second. That throughput
would indicate that the SCION BRs forms the bottleneck, not our TC-based SIG
implementation.

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

250

Packet size (Bytes)

C
al

cu
la

te
d

Th
ro

ug
hp

ut
(M

b/
s)

(h
ig

he
ri

s
be

tte
r)

Calculated Throughput for RTT Experiment

IP SCION US-SIG TC-SIG1 TC-SIG1+2

Figure 7.5: Calculated throughput for the RTT experiment. The error bars show the standard devi-
ation calculated using the 100 measurement repetitions. The desired outcome is a high caculated
throughput.

In fig. 7.5 we show the calculated throughput. The results show that TC-SIG1+2
(purple line) achieves higher throughputs than US-SIG for packet sizes greater than
500 bytes. However, TC-SIG1+2 does leave room for improvement since it achieves
only 130 megabits per second instead of 200 megabits per second. The TC-SIG1

7.2. THROUGHPUT 53

scenario (grey line) lacks behind since it performs worse than US-SIG (red line). The
higher packet loss of TC-SIG1 (sec. 7.4) probably causes the lower throughput. The
unexpectedly low throughput achieved by the SCION ping test may be caused by
the inability to set the flood and preload option flags for the SCION ping command.
US-SIG (red line) calculated throughput flattens off for larger packet sizes. We ex-
pect the increased processing delay for larger packet sizes (sec. 7.1) to cause the
flattening.

Besides the calculated RTT throughput, we also conduct throughput measure-
ments using iPerf3. We expect the results to be comparable to the throughput we
got from the RTT experiments. If the results differ, the throughput should be higher
since iPerf3 is designed for maximum throughput measurements, whereas the ping
tool is not.

Fig. 7.6 shows the measured throughput values. We repeated the measurements
100 times, and the figure shows the average and standard deviation (error bar). TC-
SIG1 is left out of the figure since we were not able to perform that test successfully.
The UDP data packets would correctly flow between SIG-1 and SIG-2. However,
SIG-2 did not correctly transmit the measurement results to SIG-1 due to reordered
TCP packets. We discuss the TCP reordering limitations in sec. 8.3. We did not
encounter this issue for the TC-SIG1+2 scenario.

0 200 400 600 800 1,000 1,200 1,400
0

100

200

300

400

500

600

Packet size (Bytes)

Th
ro

ug
hp

ut
(M

b/
s)

(h
ig

he
ri

s
be

tte
r)

iPerf Throughput

IP US-SIG TC-SIG1+2

Figure 7.6: Maximum throughput reported by iPerf3 for different packet sizes. The values are av-
eraged over 100 measurement repetitions and the error bars indicate the standard deviation for the
100 repetitions. A higher achieved throughput is the desired value. The error bars show the standard
deviation.

54 CHAPTER 7. EXPERIMENTS WITH A TC-BASED SIG

The results confirm our expectation that the throughput would increase com-
pared to the calculated RTT throughput. TC-SIG1+2 achieves a maximum through-
put of 160 megabits per second and US-SIG 130 megabits per second. TC-SIG1+2
throughput is still lower than the native SCION maximum throughput, indicating that
more performance gains can be made. Just as for fig. 7.5, we expect the increased
processing delay for larger packet sizes (sec. 7.1) to cause the flattening of the
throughput for the US-SIG (red line).

7.3 CPU Utilisation

We measure and analyse the CPU utilisation to determine the SIG’s and TC-based
SIG’s computational load. Additionally, it allows us to determine any bottlenecks in
the system.

We measure the CPU utilisation resulting in system, user and wait utilisation
percentages. The system utilisation indicates time spent executing kernel code.
The user utilisation indicates time spent executing user space code, whereas the
wait utilisation indicates time spent waiting for input-output operations [61]. The
input-output operations are disk and network operations. The wait utilisation for the
tests we performed is presumably caused by networking since we do not write to
disk. The maximum CPU utilisation measurable is 400% since we measure the
utilisation per core and add up the values.

We start by discussing the user space SIG CPU utilisation. To be clear, each
scenario has a user space SIG for TC-SIG1+2 and TC-SIG1; it runs parallel to the
TC-based SIG. We expect the user space SIG implementation to be a bottleneck for
the US-SIG scenario. Therefore, the CPU utilisation should be roughly 100% for that
scenario, assuming that the user space SIG runs on a single CPU core. In contrast,
we expect TC-SIG1+2 to hardly utilise CPU resources.

Fig. 7.7 shows the measured CPU utilisations for the IP (blue), US-SIG (red),
TC-SIG1 (grey) and TC-SIG1+2 (purple) scenario. The user, system and wait per-
centages are graphed on top of each other, resulting in the total CPU utilisation. The
red bars show that the US-SIG scenario depends on and heavily utilises the CPU.
Additionally, we see that for the TC-SIG1 scenario, the CPU is utilised with a peek
at a packet size of 1300 bytes. The utilisation of the TC-SIG1 scenario for packet
sizes 100 to 1200 bytes is explained by our TC-based SIG implementation passing
on messages to the user space SIG implementation. At the 1300 bytes packet size,
the CPU utilisation indicates that all received packets are passed to the user space
implementation, which aligns with the earlier RTT results.

7.3. CPU UTILISATION 55

100 200 300 400 500 600 700 800 900 1000110012001300
0

20

40

60

80

100

120

140

Packet size (Bytes)

C
P

U
ut

ili
sa

tio
n

%
(lo

w
er

is
be

tte
r)

User Space SIG CPU Utilisation For The RTT Experiment

IP User IP System IP Wait
US-SIG User US-SIG System US-SIG Wait
TC-SIG1 User TC-SIG1 System TC-SIG1 Wait

TC-SIG1+2 User TC-SIG1+2 System TC-SIG1+2 Wait

Figure 7.7: The measured CPU utilisation for the user space SIG for different payload sizes. The
utilisation is specified in system, user and wait CPU utilisation percentages. The desired outcome
is to have minimal CPU utilisation for the user space SIG. The figure clearly shows that TC-SIG1+2
does not utilise CPU resources.

Next, we discuss the dispatcher CPU utilisation. We consider the dispatcher
since it is responsible for receiving the incoming packets and forwarding them to the
user space SIG (see sec. 2.3). This responsibility makes the dispatcher likely to form
a bottleneck for the user space SIG implementation. However, the dispatcher should
not utilise any CPU resources for the TC-SIG1+2 scenario since the TC-based SIG
implementation is attached directly to the network interface. Therefore, it sees and
potentially redirects the packets before the dispatcher.

We show the measured CPU utilisation in fig. 7.8. Indeed the dispatcher does
not utilise the CPU for TC-SIG1+2 (purple bars). The dispatcher does use CPU
resources for the TC-SIG1 scenario (grey bars), following the same reasoning as the
user space SIG CPU utilisation. Interestingly the dispatchers’ system CPU utilisation
for the US-SIG scenario (red crossed bar) increases linearly with the packet showing
the same trend as the average RTT. Receiving and copying packets of increased
size from kernel space to user space would explain this increase in system CPU
utilisation.

56 CHAPTER 7. EXPERIMENTS WITH A TC-BASED SIG

100 200 300 400 500 600 700 800 900 1000110012001300
0

20

40

60

80

Packet size (Bytes)

C
P

U
ut

ili
sa

tio
n

%
(lo

w
er

is
be

tte
r)

Dispatcher CPU Utilisation For The RTT Experiment

IP User IP System IP Wait
US-SIG User US-SIG System US-SIG Wait
TC-SIG1 User TC-SIG1 System TC-SIG1 Wait

TC-SIG1+2 User TC-SIG1+2 System TC-SIG1+2 Wait

Figure 7.8: The measured CPU utilisation for the dispatcher for different payload sizes. The utilisation
is specified in system, user and wait CPU utilisation percentages. The desired outcome is to have
minimal CPU utilisation for the dispatcher. TC-SIG1+2 does not utilise any CPU resources. However,
the system CPU utilisation increases linearly with the packet size for the US-SIG scenario.

Finally, we discuss the CPU utilisation of the ping command. The CPU utilisa-
tion of the ping command indicates whether the measurement tool (ping) forms the
bottleneck or other components in the network (e.g., the user space SIG). We ex-
pect the utilisation to be 100% for the IP and TC-SIG1+2 scenarios since ping is a
single-threaded process. 100% utilisation would indicate that ping is the bottleneck
for these scenarios. On the other hand, we expect the CPU utilisation to be lower
for the TC-SIG1 scenario and the lowest for the US-SIG scenario. These utilisa-
tions would indicate that ping is a bottleneck for the IP and TC-SIG1+2 scenarios.
In contrast, the user space SIG implementation would be a bottleneck for the other
scenarios.

Fig. 7.9 shows the measured CPU utilisation for the ping command. As expected,
the IP scenario has approximately 100% CPU utilisation (blue bars). However, the
TC-SIG1+2 scenario (purple bars) has a significantly smaller CPU utilisation. The
utilisation for the TC-SIG1+2 scenario indicates that a component within the network
forms a bottleneck by limiting how fast the ping command can send. This component

7.4. PACKET LOSS 57

could be our TC-based SIG implementation, the SCION BR (in the BR-1 or BR-
2 host) or both. TC-SIG1 and US-SIG scenarios show the expected limited CPU
utilisation since the user space SIG bottlenecks them.

100 200 300 400 500 600 700 800 900 1000110012001300
0

20

40

60

80

100

Packet size (Bytes)

C
P

U
ut

ili
sa

tio
n

%
(h

ig
he

ri
s

be
tte

r)

Ping CPU Utilisation For The RTT Experiment

IP User IP System IP Wait
US-SIG User US-SIG System US-SIG Wait
TC-SIG1 User TC-SIG1 System TC-SIG1 Wait
TC-SIG1+2 User TC-SIG1+2 System TC-SIG1+2 Wait

Figure 7.9: The CPU utilisation for the ping command for different payload sizes. The utilisation is
specified in system, user and wait CPU utilisation percentages. The desired outcome is to have
maximal CPU utilisation for the ping command since that indicates that the ping command is forming
the bottleneck and not the SCION components.

7.4 Packet Loss

Packet loss is of interest to us since packet loss could indicate problems in the
system and is a waste of networking resources. The value should be low to 0 for all
scenarios since there is no congestion on our network.

Fig. 7.10 shows the packet loss measured during the RTT experiment. The TC-
SIG1 scenario (grey line) shows a relatively high packet loss. After investigating the
user space SIG logs on the SIG-2 host, we discovered the user space implementa-
tion dropped the packets. The logs did not contain the reason why the implementa-
tion dropped the packets.

A possible reason for the packet loss could be sequence number errors caused
by the reordering of packets. The reordering could occur due to the parallel deploy-

58 CHAPTER 7. EXPERIMENTS WITH A TC-BASED SIG

ment and hybrid functionality of the user space SIG and TC-based SIG implementa-
tion in the SIG-1 host. The parallel deployment of the user space SIG and TC-based
SIG in the SIG-1 hosts would not form a problem for the TC-SIG1+2 scenario since
the TC-based SIG in the SIG-2 host would decapsulate the packets without dropping
them due to sequence number errors.

The relatively high packet loss could also be caused by that the fact that the SIG-
1 host using our TC-based SIG is capable of sending the packets faster than the not
accelerated SIG-2 host can process.

0 200 400 600 800 1,000 1,200 1,400
0

1

2

3

4

5

6

Packet size (Bytes)

P
ac

ke
tL

os
s

%
(lo

w
er

is
be

tte
r)

Packet Loss for the RTT Experiment

IP SCION US-SIG TC-SIG1 TC-SIG1+2

Figure 7.10: The measured package loss for the RTT experiment averaged over the 100 measure-
ment repetitions. The desired outcome is a low packet loss value. The error bars show the stan-
dard deviation. The interoperable OPDP SIG scneario shows relatively high packet loss caused by
dropped packets by the user space SIG implementation in the SIG-2 host.

Chapter 8

Discussion

In this chapter, we use our work on the OPDP implementations (chapter 5) and our
experiments (chapters 6 and 7) to reflect on the P4 hardware constraints (sec. 8.1),
our testbed design (sec. 8.2) the limitations of our OPDP SIG prototype (sec. 8.3),
and the SIG framing protocol (sec. 8.4).

8.1 P4-based SIG

In sec. 5.2, we mentioned that we did not manage to realise a P4 implementation of
the SIG because of the constraints of the P4 hardware. These constraints are not
specific to the Intel Tofino but apply to all high-speed pipelined networking switches.
The operations that the framing protocol requires (e.g., reassembly) discussed in
sec. 8.4 limit the class of devices that can fully support the SIG.

The required SIG operations like packet reassembly usually occur at end-hosts
and are non-normal behaviour for network switches. The Intel Connectivity Re-
search Program forum confirms this statement by mentioning that fragmentation,
defragmentation and packet reassembly are not in line with the high-speed design
in the ”Research and Publication Review Guidelines”. Additionally, subject matter
experts also confirmed this via an e-mail consultation.

As mentioned in sec. 5.2 a hybrid design could be possible for the Tofino. The de-
sign would run the user space implementation on the CPU of the Tofino-based sys-
tem and forward the packets which require unsupported operations to user space,
like reassembly. However, we do not believe this would be an efficient use of the
Tofino hardware since congestion on the CPU port could occur since the CPU (user
space) would quickly become the bottleneck. The physical ports do not only operate
with higher throughput; they also outnumber the CPU port since there is only one
CPU port and many physical ports.

59

60 CHAPTER 8. DISCUSSION

8.2 Testbed

We focused on getting a first indication of the performance of an OPDP-based SIG.
We therefore setup a simple testbed (see sec. 6.2). Our testbed only contains two
ASes. As a result, the path header consists of only two HFs making up one fixed
path. Therefore, we did not test our prototype in an environment with varying paths
or HFs. We expect that our prototype would still be functional since it does not act
on the HFs. It treats the HF information as a binary blob it uses to encapsulate the
packets. The TTL time for eBPF map entries set in the user program would dictate
how fast the program would adapt to path changes. A lower TTL would result in
a more responsive system at the cost of letting more packets through to the user
space implementation.

In addition, we perform all our tests in a controlled environment with direct virtual
links between the hosts. This controlled environment has the advantage of easy
development and deployment, but it does not simulate congestion or packet loss
caused by other actors on the network. A controlled environment without conges-
tion is desired to perform accurate and reproducible measurements for our specific
purpose to compare US-SIG, TC-SIG1, and TC-SIG1+2. However, it does not rep-
resent a deployment on the Internet where congestion and packet loss could occur.

Our completely virtualised measurement setup influences the test results com-
pared to deploying our TC-based SIG prototype directly on hardware. However,
we expect the results to become more favourable since we could utilise hardware
offloading for our OPDP using the same source code as the virtual deployment.
Additionally, there would be less overhead due to the virtualisation.

8.3 Experiments with a TC-based SIG

As mentioned in sec. 7.2, we ran into packet reordering problems for the interoper-
able OPDP SIG scenario. After analysing packet captures, we found that packets
handled by our OPDP SIG could overtake packets forwarded to the user space SIG.
The reordering of the packets creates several problems. Firstly, the reordering of
SIG frames results in packets being dropped by the user space SIG receiving the
frames due to sequence number errors. Secondly, reordered packets causes signifi-
cant performance degradation for TCP [62]. We found the performance degradation
to be so severe that iPerf3 would not return the results correctly.

We set the UDP checksum to 0 as a workaround for the kernel dropping packets
due to an invalid checksum. This workaround was a temporary solution to achieve
measurable results within our limited time. Correctly calculating the checksum in-
stead of bypassing the check is strongly advised before implementing our prototype

8.4. SIG FRAMING PROTOCOL 61

in a production environment. This calculation will negatively influence the perfor-
mance of our prototype since more computation is required. We expect the negative
influence to be minor, but more required computation decreases performance per
definition. Therefore, our accelerated prototype should still outperform the current
SIG implementation.

Our prototype has a variable MAX SIZE which defines the maximum size of the
binary data header it can handle. This limitation is due to the maximum allowed
stack size of eBPF programs. Packets with a header size exceeding the MAX SIZE

would still be processed correctly by the user space SIG implementation. To be
clear, our solution does not drop any packets. The incompatible packets would
not be fast-tracked. In sec. 9.3 we describe an approach to possibly remove this
limitation.

We made a first attempt at optimising the SIG implementation. Although the re-
sults seem promising, we see room for more improvement. We discuss the possible
improvements in sec. 9.3.

8.4 SIG Framing Protocol

In this section, we discuss how the design choices by the SCION developers of the
SIG framing protocol limit OPDP deployments.

We will first discuss the SIG framing protocol design choices. The maximum
header stack size is 1150 bytes: 14 (Ethernet) + 40 (IPv6) + 8 (UDP) + 1024
(SCION) + 8 (SCION/UDP) + 16 (Frame) + 40 (IPv6) = 1150, a significant amount
of the common 1500 Maximum Transmission Unit (MTU) of the Internet. Typically
a header would contain far fewer HFs than the maximum supported, resulting in a
reduced packet overhead. However, the fact that typically headers contain fewer
Hop Fields (HFs) does not relax the hardware constraint since the hardware should
support the maximum header size defined by the protocol specification.

Aggregating IP packets and encapsulating multiple packets inside a single SIG
frame has downsides. Grouping multiple packets results in a less straightforward de-
capsulation. In our P4 implementation of the SIG we learned that not all hardware
packet processing pipelines can duplicate incoming packets, a requirement for de-
capsulating multiple IP packets from a single SIG frame. Furthermore, the operation
adds latency to the first packet since it waits for the other aggregated packets.

The design decision of fragmenting packets with a MTU which is too large over
multiple SIG frames results in required reassembly operations at the receiving side.
This reassembly is expensive to perform at high line rates due to the necessary
buffering at the receiving side. Sometimes this buffering is not even possible since
the packets are processed in different pipelines within a hardware device. A device

62 CHAPTER 8. DISCUSSION

with a many-to-one connection acting as an aggregation point results in a significant
traffic load that should be processed efficiently with high throughput. In that sce-
nario, it is not possible to buffer packets to reassemble them later. Network switches
neither implement fragmentation nor defragmentation. IPv4 implements fragmenta-
tion inside routers, however RFC4963 [63] mentions reassembly errors at high data
rates. IPv6 has moved the fragmentation to the source host [64] altogether. The SIG
Framing protocol could function in the same manner.

Additionally, the sequence numbering might be unnecessary. The transport pro-
tocols of the encapsulated IP packets take care of the retransmission of missing
packets. TCP has this functionality built-in, and UDP application developers con-
sider possible packet loss in their design. The sequence numbering seems un-
necessary if we compare the SIG framing protocol, a form of tunnelling, to existing
IP tunnelling. The sequence number is required for the expensive reassembly op-
erations described above since packets can get reordered. The downside of the
included sequence numbering is the additional complexity it adds to the protocol.

Chapter 9

Conclusions, Recommendations and
Future Work

In this chapter, we start by concluding our research by answering the research ques-
tions (sec. 9.1). Next, we provide our recommendations for protocol creators and
OPDP technology developers (sec. 9.2). Finally, we discuss the possible future
work to be performed (sec. 9.3).

9.1 Conclusions

Our research aimed to accelerate the performance of the SIG using state-of-the-
art OPDPs. We have successfully created an open-source TC-based OPDP SIG
prototype. The prototype is the first attempt at accelerating the SIG. Our prototype
is user space implementation agnostic since it is self-learning because it acquires
the required path data by analysing outgoing SIG frame packets.

Besides the OPDP prototype, we have also created an automated virtualised
testbed setup for OPDP SIGs performance measurements. We performed detailed
measurements and compared the performance of the US-SIG and TC-based SIG. In
our analysis, we have found that our prototype increases the performance whilst re-
ducing the load on the CPU, enabling the SIG to be better suited for high-throughput
scenarios.

We will now answer our research questions one by one.

[RQ1] To what extent can state-of-the-art OPDPs be used to accelerate

the performance of a SIG?

Based on our engineering and measurement work, we provide a first indication
that a high-performance SIG is possible using a TC-based OPDP. However, we also
learned that OPDP languages and platforms have several limitations that make it a

63

64 CHAPTER 9. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK

non-trivial exercise to implement and maintain the SIG for different OPDPs.

[RQ2] What test setup do we require to perform the performance measurements

on the SIG and OPDP SIG?

The goal of the testbed is a minimal measurement setup to evaluate the perfor-
mance of an OPDP SIG, with RTT and throughput as performance parameters. We
established a minimal required measurement setup of two ASes with four virtualised
hosts. Two hosts are used within each AS. In one host of the AS we deploy a SCION
BR and in the other host we deploy a SIG. We have automated the creation of our
virtualised measurement setup to increase reproducibility. Our virtualised testbed’s
network latency is neglectable compared to the SIG processing delay, which allows
us to compare the processing delay between the TC-based SIG and US-SIG.

[RQ3] Which OPDP technology is best suited to improve the SIG performance?

Out of the three OPDPs we researched, we were able to create a functioning
accelerated SIG prototype with a TC-based OPDP. We found the hardware-based
P4 OPDP and the kernel-based XDP OPDP to be unsuitable for accelerating the
SIG. P4 is unsuited since the required fragmentation and reassembly operations
for the SIG are not supported. We found XDP not to be suited since we could not
attach the XDP program to the ingress side of the interfaces, which is a requirement
for redirecting the packets. We determined these incompatibilities by attempting to
create prototypes for all OPDPs.

[RQ4] What performance gains can be achieved using state-of-the-art OPDPs?

In our measurements, we achieve a 64% throughput increase whilst reducing
the average latency by 45% and the CPU utilisation by 99% for the TC-based OPDP
SIG compared to the US-SIG. The CPU utilisation decrease is calculated for the
utilisation of the user space SIG. Our prototype is a first attempt at accelerating the
SIG using OPDP and has room for optimisations.

9.2 Recommendations

In this section, we provide recommendations for network protocol designers, eBPF
developers and programmable network hardware vendors.

• Network protocol designers must consider that hardware switching has differ-
ent constraints than software switching. We recommend avoiding fragmenta-
tion and defragmentation by leaving this up to the end host as discussed in

9.3. FUTURE WORK 65

sec. 8.4. Variable field lengths should also be avoided if possible [51], and
in general, the protocol should be as simple as possible. Software switching
performs satisfactorily for some use cases, but the network layer should be
compatible with hardware switching to scale.

• Our research gives a use case for attaching XDP programs (see sec. 5.3)
to the egress side of interfaces and for ingress to ingress forwarding. We
recommend to the XDP developers to support these features since that would
allow us to implement the SIG using XDP. There is already work performed
on this feature [54], but we highlight the need for this feature.

• We recommend that programmable network hardware vendors implement an
encryption P4 extern (custom hardware helper) like there already is for CRC
calculations. For the use case of the SIG, performing MAC calculations was
not required. However, there is a requirement for per-packet signing for SCION
packet forwarding in the SCION BR chapter 2 and probably more future Inter-
net protocols. So to keep up with these developments, we see the need to
efficiently perform encryption inside the network pipelines.

9.3 Future Work

Our research is the first attempt at optimising and measuring the performance of
the SIG. In this section, we will review a few possible improvements for our OPDP
prototype and measurement setup and discuss future measurement ideas.

9.3.1 OPDP Implementations for the SIG

The current prototype implementation is not yet fully optimised. A deeper analysis
comparing the performance of different eBPF map types and helper functions for
our prototype could further improve the performance. Besides experimenting with
the map types, the key used for the map could be optimised, e.g. by splitting the
map into two maps, one for IPv4 and one for IPv6, reducing the required key size.

Additionally, the Ethernet egress TC program could be replaced by a patched
version of the user space SIG. The patched SIG fills the eBPF maps with the re-
quired path information. Removing the Ethernet egress TC program dependency
most likely increases the performance with the downside of not being user space
agnostic anymore.

A different approach to improving performance could be implementing the OPDP
SIG using VPP or DPDK. VPP is the technology Anapaya uses for their closed-

66 CHAPTER 9. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK

source components. VPP and DPDK were outside the scope of our thesis due to
time constraints.

Besides performance improvements, we also have some possible improvements
in functionality for our prototype. Support for VLAN parsing should be added be-
cause this is currently not supported. As discussed in sec. 8.3 there is a MAX SIZE

limitation on the SCION headers out prototype can handle due to the eBPF stack
size limit. This limitation could be resolved by storing the headers directly into an
eBPF map.

9.3.2 Measurement Setup

An improvement for our testbed would be to increase the scale and topology. Cur-
rently, the testbed exists of only two ASes. This could easily be increased on the
condition that there are enough computational resources available on the testbed
host. A different take on the measurement setup would be to deploy our OPDP
prototype in the SCIONLab [11] and measure its performance in a real-life scenario.

9.3.3 Measurements

An interesting future measurement would be to deploy our prototype on actual hard-
ware to see how the performance relates to our virtualised scenario. Additionally, a
test using a Netronome NIC [39] with TC offloading would enable us to see the per-
formance gains on our prototype using offloaded TC. In sec. 7.1, we found that our
prototype has a constant latency for increasing packet sizes, whereas the current
user space SIG implementation increases linearly with the packet size. Therefore, it
would be interesting to perform tests with jumbo frames (9000 bytes) to determine if
the latency payload size relations stay the same. Our measurements are currently
performed for packets of a specific size for multiple different sizes. However, a test
with packets of mixed sizes would further increase representativeness.

Bibliography

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, U. Kc Claffy Caida Uc,
S. Diego, P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang, “Named
Data Networking,” ACM SIGCOMM Computer Communication, 2014. [Online].
Available: http://trac.tools.ietf.org/group/irtf/trac/wiki/icnrg

[2] NGP, “GR NGP 009 - V1.1.1 - Next Generation Protocols (NGP); An example
of a non-IP network protocol architecture based on RINA design principles,”
ETSI GR NGP, 2019.

[3] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski, “The
SCION internet architecture,” Communications of the ACM, vol. 60, no. 6, pp.
56–65, 6 2017.

[4] SCIONLab, “SCION IP Gateway (SIG) - SCIONLab Tutorials,” 2020. [Online].
Available: https://docs.scionlab.org/content/apps/remote sig.html

[5] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller, and A. Perrig,
The Complete Guide to SCION From Design Principles to Formal Verification.
Zürich: ETH Zürich, 2 2022.

[6] Anapaya, “SCiON-Internet - The New Way to Connect,” 2022. [Online].
Available: https://www.anapaya.net/scion-the-new-way-to-connect

[7] scionproto, “scionproto/scion: SCION Internet Architecture.” [Online]. Available:
https://github.com/scionproto/scion

[8] Cloudflare, “What is BGP hijacking? — Cloudflare.” [Online]. Available:
https://www.cloudflare.com/learning/security/glossary/bgp-hijacking/

[9] D. Pinto, “What will happen when the routing table hits 1024k? — APNIC
Blog,” 3 2021. [Online]. Available: https://blog.apnic.net/2021/03/03/what-will-
happen-when-the-routing-table-hits-1024k/

[10] J. P. Wagner, D. Hausheer, and M. Gartner, “Improving Packet Processing
Speed on SCION Endhosts,” Ph.D. dissertation, Otto-von-Guericke-Universität
Magdeburg, Magdeburg, 9 2021.

67

http://trac.tools.ietf.org/group/irtf/trac/wiki/icnrg
https://docs.scionlab.org/content/apps/remote_sig.html
https://www.anapaya.net/scion-the-new-way-to-connect
https://github.com/scionproto/scion
https://www.cloudflare.com/learning/security/glossary/bgp-hijacking/
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/

68 BIBLIOGRAPHY

[11] SCIONLab, “SCIONLab.org,” 2020. [Online]. Available: https://www.scionlab.
org/

[12] J. de Ruiter and C. Schutijser, “Nieuwe internetinfrastructuren: een inleiding
tot SCION — SIDN Labs,” 2022. [Online]. Available: https://www.sidnlabs.nl/
nieuws-en-blogs/nieuwe-internetinfrastructuren-een-inleiding-tot-scion

[13] “The Go Programming Language.” [Online]. Available: https://go.dev/

[14] SCION, “SCION IP Gateway Framing Protocol Specification — SCION
documentation,” 2021. [Online]. Available: https://docs.scion.org/en/latest/
protocols/sig.html

[15] “ASICs at the Edge.” [Online]. Available: https://blog.cloudflare.com/asics-at-
the-edge/

[16] “Switch Architectures.” [Online]. Available: https://www.grotto-networking.com/
BBSwitchArch.html

[17] “P4 – Language Consortium.” [Online]. Available: https://p4.org/

[18] Y. Lixiang, L. Wenfeng, C. Dazhao, L. Tianhou, W. Ruobing, S. Qi, and F. Ke,
The ART of LINUX KERNEL DESIGN. CRC Press, 2014.

[19] R. P. França, M. Peluso, A. C. B. Monteiro, Y. Iano, R. Arthur, and V. Vieira Es-
trela, “Development of a kernel: A deeper look at the architecture of an op-
erating system,” in Smart Innovation, Systems and Technologies, vol. 140.
Springer Science and Business Media Deutschland GmbH, 2019, pp. 103–114.

[20] “Networking — The Linux Kernel documentation.” [Online]. Available:
https://www.kernel.org/doc/html/latest/networking/index.html

[21] eBPF.io, “What is eBPF? An Introduction and Deep Dive into the eBPF
Technology,” 2021. [Online]. Available: https://ebpf.io/what-is-ebpf#verification

[22] NLnetLabs, “XDP - The NLnet Labs Blog,” 2022. [Online]. Available:
https://blog.nlnetlabs.nl/tag/xdp/

[23] D. R. Barach and E. Dresselhaus, “Vectorized Software Packet Forwarding,” 6
2011.

[24] FD.io, “FD.io - The Universal Dataplane.” [Online]. Available: https://fd.io/

[25] H. Bi and Z.-H. Wang, “DPDK-based Improvement of Packet Forwarding,” ITM
Web of Conferences, 2016.

https://www.scionlab.org/
https://www.scionlab.org/
https://www.sidnlabs.nl/nieuws-en-blogs/nieuwe-internetinfrastructuren-een-inleiding-tot-scion
https://www.sidnlabs.nl/nieuws-en-blogs/nieuwe-internetinfrastructuren-een-inleiding-tot-scion
https://go.dev/
https://docs.scion.org/en/latest/protocols/sig.html
https://docs.scion.org/en/latest/protocols/sig.html
https://blog.cloudflare.com/asics-at-the-edge/
https://blog.cloudflare.com/asics-at-the-edge/
https://www.grotto-networking.com/BBSwitchArch.html
https://www.grotto-networking.com/BBSwitchArch.html
https://p4.org/
https://www.kernel.org/doc/html/latest/networking/index.html
https://ebpf.io/what-is-ebpf#verification
https://blog.nlnetlabs.nl/tag/xdp/
https://fd.io/

BIBLIOGRAPHY 69

[26] DPDK, “Home - DPDK.” [Online]. Available: https://www.dpdk.org/

[27] C. Hesselman, P. Grosso, R. Holz, F. Kuipers, J. H. Xue, M. Jonker, J. de Ruiter,
A. Sperotto, R. van Rijswijk-Deij, G. C. Moura, A. Pras, and C. de Laat, “A
Responsible Internet to Increase Trust in the Digital World,” Journal of Network
and Systems Management, vol. 28, no. 4, pp. 882–922, 10 2020.

[28] “ONF Programmable Networks Projects - Open Networking Foundation.”
[Online]. Available: https://opennetworking.org/onf-sdn-projects/

[29] “P4˜16˜ Portable Switch Architecture (PSA),” 2021. [Online]. Available:
https://p4.org/p4-spec/docs/PSA.html

[30] “GitHub - p4lang/behavioral-model: The reference P4 software switch.”
[Online]. Available: https://github.com/p4lang/behavioral-model

[31] The P4.org Architecture Working Group, “P4 16 Portable Switch Architecture
(PSA),” P4.org, Tech. Rep., 2018.

[32] Intel, “Intel® Tofino™ Series Programmable Ethernet Switch ASIC,” 2022. [On-
line]. Available: https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html

[33] ——, “P4 16 Intel ® Tofino™ Native Architecture - Public Version,” Intel, Tech.
Rep., 3 2021.

[34] V. Gurevich and A. Fingerhut, “P4 16 Programming for Intel® Tofino™ using
Intel P4 Studio™,” 2021. [Online]. Available: https://opennetworking.org/wp-
content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf

[35] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architecture
for User-Level Packet Capture,” in Proceedings of the USENIX Winter 1993
Conference Proceedings on USENIX Winter 1993 Conference Proceedings,
ser. USENIX’93. USA: USENIX Association, 1993, p. 2.

[36] M. A. Vieira, M. S. Castanho, R. D. Pacı́fico, E. R. Santos, E. P. Câmara, and
L. F. Vieira, “Fast packet processing with EBPF and XDP: Concepts, code,
challenges, and applications,” ACM Computing Surveys, vol. 53, no. 1, 2 2020.

[37] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert,
D. Ahern, and D. Miller, “The eXpress data path: Fast programmable packet
processing in the operating system kernel,” in CoNEXT 2018 - Proceedings of
the 14th International Conference on Emerging Networking EXperiments and
Technologies. Association for Computing Machinery, Inc, 12 2018, pp. 54–66.

https://www.dpdk.org/
https://opennetworking.org/onf-sdn-projects/
https://p4.org/p4-spec/docs/PSA.html
https://github.com/p4lang/behavioral-model
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf

70 BIBLIOGRAPHY

[38] “AF XDP — The Linux Kernel documentation.” [Online]. Available: https:
//www.kernel.org/doc/html/v4.18/networking/af xdp.html

[39] J. Kicinski and N. Viljoen, “eBPF Hardware Offload to SmartNICs: cls bpf and
XDP,” Netronome Systems, Cambridge, Tech. Rep., 2016.

[40] D. Chandrashekar and M. Riaz, “Performance Comparison of SCION with
Routed IP on Virtual Machines,” AALTO UNIVERSITY, Tech. Rep., 11 2020.

[41] M. Gartner, “Improving SCION Bittorrent with efficient Multipath Usage,” Ph.D.
dissertation, Otto-von-Guericke-Universität Magdeburg, 2020.

[42] L.-C. Schulz and D. Hausheer, “Offloading SCION Packet Forwarding to XDP
BPF,” Otto-von-Guericke-University Magdeburg, Tech. Rep., 2022. [Online].
Available: https://legacy.netdevconf.info/0x13/session.

[43] C. Neukom, “High-Performance File Transfer in SCION,” Ph.D. disserta-
tion, ETH Zurich, 2020. [Online]. Available: https://doi.org/10.3929/ethz-b-
000443419

[44] NLnetLabs, “GitHub - NLnetLabs/XDPeriments: Example programs fot the
Journeying into XDP blogs,” 2022. [Online]. Available: https://github.com/
NLnetLabs/XDPeriments/

[45] O. Yoachimik, “A deep-dive into Cloudflare’s autonomous edge DDoS
protection,” 2021. [Online]. Available: https://blog.cloudflare.com/deep-dive-
cloudflare-autonomous-edge-ddos-protection/

[46] D. Lee, “Faster Packet Processing in Linux: XDP,” SOSCON, Tech. Rep., 2019.

[47] “NetFPGA.” [Online]. Available: https://netfpga.org/

[48] K. Součková, A. Perrig, and B. Rothenberger, “FPGA-based line-rate packet
forwarding for the SCION future Internet architecture,” Ph.D. dissertation, ETH
Zurich, 9 2019.

[49] “GitHub - AnotherKamila/scion-p4netfpga,” 2019. [Online]. Available: https:
//github.com/AnotherKamila/scion-p4netfpga

[50] “GitHub - SIDN/p4-scion: A P4 implementation of the SCION protocol.”
[Online]. Available: https://github.com/SIDN/p4-scion

[51] J. de Ruiter and C. Schutijser, “Next-Generation Internet at Terabit Speed:
SCION in P4,” in Proceedings of the 17th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’21. New

https://www.kernel.org/doc/html/v4.18/networking/af_xdp.html
https://www.kernel.org/doc/html/v4.18/networking/af_xdp.html
https://legacy.netdevconf.info/0x13/session.
https://doi.org/10.3929/ethz-b-000443419
https://doi.org/10.3929/ethz-b-000443419
https://github.com/NLnetLabs/XDPeriments/
https://github.com/NLnetLabs/XDPeriments/
https://blog.cloudflare.com/deep-dive-cloudflare-autonomous-edge-ddos-protection/
https://blog.cloudflare.com/deep-dive-cloudflare-autonomous-edge-ddos-protection/
https://netfpga.org/
https://github.com/AnotherKamila/scion-p4netfpga
https://github.com/AnotherKamila/scion-p4netfpga
https://github.com/SIDN/p4-scion

BIBLIOGRAPHY 71

York, NY, USA: Association for Computing Machinery, 2021, pp. 119–125.
[Online]. Available: https://doi.org/10.1145/3485983.3494839

[52] K. van Hove, “P4 Hybrid Routing for Next-Generation Networks Experimenta-
tion based on Open Source Software Defined Routing,” University of Twente,
Tech. Rep., 10 2021.

[53] “tcpreplay(1) - Linux man page.” [Online]. Available: https://linux.die.net/man/1/
tcpreplay

[54] “Add support for XDP in egress path [LWN.net].” [Online]. Available:
https://lwn.net/Articles/813406/

[55] “ping(8) - Linux man page.” [Online]. Available: https://linux.die.net/man/8/ping

[56] “iPerf - iPerf3 and iPerf2 user documentation.” [Online]. Available: https:
//iperf.fr/iperf-doc.php

[57] “pidstat: Report statistics for tasks - Linux man page.” [Online]. Available:
https://linux.die.net/man/1/pidstat

[58] “Bandwidth Tester - SCIONLab Tutorials.” [Online]. Available: https:
//docs.scionlab.org/content/apps/bwtester.html

[59] “Oracle VM VirtualBox.” [Online]. Available: https://www.virtualbox.org/

[60] “Vagrant by HashiCorp.” [Online]. Available: https://www.vagrantup.com/

[61] “top(1) - Linux manual page.” [Online]. Available: https://man7.org/linux/man-
pages/man1/top.1.html

[62] J. Bellardo and S. Savage, “Measuring Packet Reordering,” University of Cali-
fornia at San Diego, 2002.

[63] J. Heffner, M. Mathis, and B. Chandler, “IPv4 Reassembly Errors at High Data
Rates,” IETF, 7 2007. [Online]. Available: https://www.rfc-editor.org/info/rfc4963

[64] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification
RFC2460,” IETF, 12 1998. [Online]. Available: https://www.rfc-editor.org/info/
rfc2460

https://doi.org/10.1145/3485983.3494839
https://linux.die.net/man/1/tcpreplay
https://linux.die.net/man/1/tcpreplay
https://lwn.net/Articles/813406/
https://linux.die.net/man/8/ping
https://iperf.fr/iperf-doc.php
https://iperf.fr/iperf-doc.php
https://linux.die.net/man/1/pidstat
https://docs.scionlab.org/content/apps/bwtester.html
https://docs.scionlab.org/content/apps/bwtester.html
https://www.virtualbox.org/
https://www.vagrantup.com/
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc2460
https://www.rfc-editor.org/info/rfc2460

72 BIBLIOGRAPHY

Appendix A

List of Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

AS Autonomous System

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

BMv2 Behavioural Model version 2

BPF Berkeley Packet Filter

BR Border Router

COLIBRI Collaborative lightweight inter-domain bandwidth-reservation
infrastructure

CRC Cyclic Redundancy Check

CS Control Service

DAG Directed Acyclic Graph

DDoS Distributed Denial of Service

DNS Domain Name System

DPDK Data Plane Development Kit

73

74 APPENDIX A. LIST OF ACRONYMS

ELF Executable and Linkable Format

EPIC Every Packet Is Checked

FPGA Field Programmable Gate Array

GPL General Public License

HF Hop Field

ICMP Internet Control Message Protocol

ICRP Intel Connectivity Research Program

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISA Instruction Set Architecture

ISD Isolation Domain

ISP Internet Service Provider

JIT Just in Time

LPM Longest Prefix Matching

MAC Message Authentication Code

MTU Maximum Transmission Unit

NDA Non-Disclosure Agreement

NIC Network Interface Card

OPDP Open Programmable Data Plane

PCB Path-segment Construction Beacon

PCFS Packet Carried Forwarding State

75

PSA Public Switch Architecture

QoS Quality of Service

qdisc queueing discipline

RTT Round Trip Time

SCION Scalability, Control, and Isolation On Next-Generation Networks

SDE Software Development Environment

SIDN Stichting Internet Domeinregistratie Nederland

SIG SCION IP Gateway

SLA Software License Agreement

SOSCON Samsung Open Source Conference

TC Traffic Control

TCP Transmission Control Protocol

TNA Tofino Native Architecture

TRC Trust Root Configuration

TTL Time To Live

UDP User Datagram Protocol

VM Virtual Machine

VPP Vector Packet Processing

WCET Worst-Case Execution Time

XDP eXpress Data Path

	Abstract
	Acknowledgements
	Introduction
	Internet Architectures
	Open Programmable Data Planes (OPDP)
	Problem Statement
	Goal and Research Questions
	Contributions
	Approach
	Open-source Code and Data
	Thesis Outline

	The SCION Internet Architecture
	SCION Goals
	SCION Key Concepts
	SCION Deployment
	SCION IP Gateway (SIG)

	Open Programmable Data Planes (OPDPs)
	OPDP Types
	Hardware-based
	Kernel-based
	User Space-based
	Hybrid-based

	Open versus Closed Programmable Data Planes
	Programming Languages for OPDPs
	P4
	eBPF
	XDP
	TC

	Related Work on SCION and OPDP Performance
	SCION
	XDP and TC
	P4

	OPDP-based Implementations of the SIG
	Requirements
	Hardware-based Implementation using P4
	Kernel-based Implementation using XDP
	Kernel-based Implementation using TC

	Measurement Methodology
	Performance Parameters
	Measurement Setup
	Scenarios for Measurement Traffic
	Measurement Tools
	Reproducibility

	Experiments with a TC-based SIG
	RTT
	Throughput
	CPU Utilisation
	Packet Loss

	Discussion
	P4-based SIG
	Testbed
	Experiments with a TC-based SIG
	SIG Framing Protocol

	Conclusions, Recommendations and Future Work
	Conclusions
	Recommendations
	Future Work
	OPDP Implementations for the SIG
	Measurement Setup
	Measurements

	References
	List of Acronyms

