Rolling with Confidence
Managing the Complexity of DNSSEC Operations

Extended Abstract

Moritz Müller
moritz.muller@sidn.nl

Taejoong Chung
t.chung@northeastern.edu

Roland van Rijswijk-Deij
r.m.vanrijswijk@utwente.nl

• DNSSEC secures the DNS, using public-key cryptography
• DNS operators need to roll their keys (KSK or ZSK), in case of a:
 • key compromise
 • key management policy
 • algorithm change
• Errors during a rollover can have a massive impact on the availability of a domain

Right timing is crucial

• DNS recursive resolvers cache records
• Keys withdrawn too early can lead to validation errors
• DNSSEC keys need to be rolled in stages
• It is safe to move to the next stage after:
 • every name server serves the new records (publication delay)
 • and every resolver has the new records in cache (propagation delay)

Our methodology lets operators define the correct timing and to roll with confidence

How to monitor a DNSSEC algorithm rollover - the .se use case

• We monitor the algorithm rollover of the Swedish ccTLD .se
• Any error would make 1.4 M domains unavailable
• At each stage: Monitor the propagation and publication delay, and the trust chain to validate the deployment

Example: Stage IV - Replacing the DS at the root

Publication Delay

• Delay at the root servers 10 minutes

Propagation Delay

• Delay at some VPs 24h longer than expected

Trust Chain

• No validation errors during the rollover

.se Rollover was a success!

We will make the measurement methodology and measurement tool available
We also monitor the, even more critical, KSK rollover of the root: rootcanary.org

Read our blog post for more details: