Anycast Monitoring with passive TCP RTT (abstract)

Giovane C. M. Moura (1) John Heidemann (2) Jeroen Bulten (3) Wes Hardaker (2) Joao Ceron (1) Cristian Hesselman (1,4) Maarten Wullink (1) Marc Groeneweg (3) Marco Davids (1)

DINR2020 Worskhop

2020-07-22

Virtual Conference

1: SIDN Labs 2: USC/ISI 3: SIDN 4: University of Twente

Introduction

- Authoritative DNS operators strive to reduce latency
- They often deploy IP anycast on donzes of global sites
 - so they can be closer to clients
- Still, operators don't really know what latency most of their clients experience

Measuring your client's latency nowadays

Active methods

- Ripe Atlas [4, 5]
- ThousandEyes [8]
- Verfploeter [1]

They have pros and cons

 Either few VPs, or require some extra effort

Passive methods

- DNS TCP RTT this presentation
- Measure latency for real clients
- Works with IPv6, and it's easy
- It's being used in production at SIDN (.nl ccTLD)
 - Tech report available [3]: https://www.isi.edu/%7ejohnh/ PAPERS/Moura20a.pdf

Measuring your client's latency nowadays

Active methods

- Ripe Atlas [4, 5]
- ThousandEyes [8]
- Verfploeter [1]

They have pros and cons

 Either few VPs, or require some extra effort

Passive methods

- DNS TCP RTT this presentation
- Measure latency for real clients
- Works with IPv6, and it's easy
- It's being used in production at SIDN (.nl ccTLD)
 - Tech report available [3]: https://www.isi.edu/%7ejohnh/ PAPERS/Moura20a.pdf

DNS over TCP? Really?

- Passive TCP latency has been used since 1996 [2]
- Used in CDNs [6]
- But nobody thought of using it for DNS
- Why?
 - DNS over TCP is often overlooked
 - It shoundn't

DNS over TCP? Really?

See tech report for details [3]. But in short:

- 2.6-6% of .nl traffic is over TCP
- 20+% of resolvers eventually send TCP queries
 - but they are responsible for 30–57% of ALL queries
- 44% of ASes covered
- and it's free passive.

Architecture used at SIDN

Figure 1: DNS TCP RTT Monitoring Architecture

What can we do with that?

- 1. Real time monitoring
- 2. Evaluate your most important client ASes
- 3. Evaluate individual anycast sites
- 4. Detect near-real time BGP misconfiguration

Real time monitoring

Prioritization by Client AS

Fixing latency for Google

Figure 4: Google: AS15169 - IPv4 - RTT (ms)

Anycast Site analysis

Figure 5: NS3 IPv4

 See NRT (Tokyo, Narita)? High inter-quartile values. But why?

Anycast Site analysis

Figure 6: NS3 IPv4

- NRT clients: top 10 from China
- And China has poor Intl' peering [9]

Detecting Near real-time BGP misconfiguration

Figure 7: Anycast B SYD site: Latency for IPv4.

Summary

- TCP RTT is old but gold
- We use it on .nl
- Provides insight into real clients
- Which can be used to fix real problems
- ENTRADA does the math for you open-source

References i

[1] DE VRIES, W. B., DE O. SCHMIDT, R., HARAKER, W., HEIDEMANN, J., DE BOER, P.-T., AND PRAS, A.

Verfploeter: Broad and load-aware anycast mapping.

In Proceedings of the ACM Internet Measurement Conference (London, UK, 2017).

[2] HOE, J. C.

Improving the start-up behavior of a congestion control scheme for tcp.

In *Proceedings of the ACM SIGCOMM Conference* (Stanford, CA, Aug. 1996), ACM, pp. 270–280.

References ii

[3] MOURA, G. C. M., HEIDEMANN, J., HARDAKER, W., BULTEN, J., CERON, J., AND HESSELMAN, C.

Old but gold: Prospecting TCP to engineer DNS anycast (extended).

Tech. Rep. ISI-TR-740, USC/Information Sciences Institute, June 2020.

[4] RIPE NCC STAFF.

RIPE Atlas: A Global Internet Measurement Network.

Internet Protocol Journal (IPJ) 18, 3 (Sep 2015), 2–26.

References iii

[5] RIPE NETWORK COORDINATION CENTRE.

RIPE Atlas.

https://atlas.ripe.net, 2015.

[6] SCHLINKER, B., CUNHA, I., CHIU, Y.-C., SUNDARESAN, S., AND KATZ-BASSETT, E.

Internet Performance from Facebook's Edge.

In *Proceedings of the Internet Measurement Conference* (New York, NY, USA, 2019), IMC '19, ACM, pp. 179–194.

[7] SIDN LABS.

ENTRADA - DNS Big Data Analytics, Jan. 2020.

https://entrada.sidnlabs.nl/.

References iv

[8] THOUSANDEYES.

Digital Experience Monitoring.

https://www.thousandeyes.com/, June 2020.

[9] ZHU, P., MAN, K., WANG, Z., QIAN, Z., ENSAFI, R., HALDERMAN, J. A., AND DUAN, H.

Characterizing Transnational Internet Performanceand the Great Bottleneck of China.

In *Proceedings of the ACM SIGMETRICS conference* (Boston, MA, USA, June 2020), ACM, p. *(to appear)*.