
Network Working Group M. Wullink
Internet-Draft SIDN
Intended status: Standards Track M. Davids
Expires: October 25, 2012 R. Gieben
 SIDN Labs
 April 23, 2012

 RESTful interface for the Extensible Provisioning Protocol
 draft-wullink-restful-epp-00

Abstract

 This document specifies a ’RESTful interface for EPP’ (REPP) with the
 aim to improve efficiency and interoperability of EPP systems.

 This document includes a new EPP Protocol Extension as well as a
 mapping of [RFC5730] XML-commands to an HTTP based (RESTful)
 interface. Existing semantics and mappings as defined in [RFC5731],
 [RFC5732] and [RFC5733] are largely retained and reusable in RESTful
 EPP.

 With REPP, no session is created on the EPP server. Each request
 from client to server will contain all of the information necessary
 to understand the request. The server will close the connection
 after each HTTP request.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 25, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wullink, et al. Expires October 25, 2012 [Page 1]

Internet-Draft REPP April 2012

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 4
 3. Conventions Used in This Document 5
 4. Stateless EPP or REPP . 5
 5. Drawbacks Associated with Stateful EPP 6
 6. EPP Extension Framework 6
 7. Resource Naming Convention 7
 8. Message Exchange . 8
 8.1. HTTP Method Definitions 8
 8.2. REPP Request . 8
 8.2.1. Payload Data . 8
 8.2.2. Request Headers 9
 8.2.3. General Headers 9
 8.3. REPP Response . 9
 8.3.1. Response Headers 9
 8.3.2. General Headers 10
 8.4. Error Handling . 10
 9. Interface Mapping . 11
 9.1. Hello . 12
 9.2. Password . 13
 9.3. Session Management Resources 13
 9.3.1. Login . 13
 9.3.2. Logout . 13
 9.4. Query Resources . 13
 9.4.1. Check . 14
 9.4.2. Info . 14
 9.4.2.1. Domain Name 14
 9.4.3. Poll . 15
 9.4.3.1. Poll Request 15
 9.4.3.2. Poll Ack . 15
 9.4.4. Transfer Query Op 15
 9.5. Object Transform Resources 16
 9.5.1. Create . 16
 9.5.2. Delete . 16
 9.5.3. Renew . 16

Wullink, et al. Expires October 25, 2012 [Page 2]

Internet-Draft REPP April 2012

 9.5.4. Update . 16
 9.5.5. Transfer . 17
 9.5.5.1. Create Op . 17
 9.5.5.2. Cancel Op . 17
 9.5.5.3. Approve Op . 17
 9.5.5.4. Reject Op . 18
 10. Transport Considerations 18
 11. Formal Syntax . 19
 11.1. RESTful EPP XML Schema 20
 12. IANA Considerations . 21
 13. Internationalization Considerations 21
 14. Security Considerations 21
 15. Obsolete EPP Result Codes 21
 16. References . 22
 16.1. Normative References 22
 16.2. Informative References 22
 Appendix A. Examples . 23
 A.1. X-REPP-authinfo . 23
 A.1.1. Domain Info with Authorization Data 23
 A.2. Hello Example . 24
 A.2.1. RESTful <hello> Request: 24
 A.2.2. RESTful <hello> Response: 24
 A.3. Password Example . 24
 A.3.1. RESTful Change Password Request: 24
 A.3.2. RESTful Change Password Response: 25
 A.4. Domain Create Example 25
 A.4.1. RESTful Domain Create Request: 25
 A.4.2. RESTful Domain Create Response: 26
 A.5. Domain Delete Example 26
 A.5.1. RESTful Domain Delete Request: 26
 A.5.2. RESTful Domain Delete Response: 27
 Authors’ Addresses . 27

Wullink, et al. Expires October 25, 2012 [Page 3]

Internet-Draft REPP April 2012

1. Introduction

 This document describes a new EPP Protocol Extension and a mapping of
 [RFC5730] XML-commands to a [REST] interface which, in contrast to
 the current EPP specification, is stateless. It aims to provide a
 mechanism that is more suitable for complex, high availability
 environments, as well as for environments where TCP connections can
 be unreliable.

 The newly defined protocol extensions described in this memo leverage
 the HTTP protocol [RFC2616] and the principles of [REST]. Conforming
 to the REST constraints is generally referred to as being "RESTful".
 Hence we dubbed the new protocol extension: "RESTful EPP" or "REPP"
 for short.

 RFC 5730 [RFC5730] Section 2.1 describes that EPP can be layered over
 multiple transport protocols. Currently, the EPP transport over TCP
 [RFC5734] is the only widely deployed transport mapping for EPP.
 This same section defines that newly defined transport mappings must
 preserve the stateful nature of EPP.

 With REPP, no session is created on the EPP server. Each request
 from client to server will contain all of the information necessary
 to understand the request. The server will close the connection
 after each HTTP request.

 With a stateless mechanism, some drawbacks of EPP (as mentioned in
 Section 5) are circumvented.

 A good understanding of the EPP base protocol specification [RFC5730]
 is advised, to grasp the extension and mapping described in this
 document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Terminology

 In this document the following terminology is used.

 REST - Representational State Transfer ([REST]). An architectural
 style.

 RESTful - A RESTful web service is a web service implemented using
 HTTP and the principles of [REST].

Wullink, et al. Expires October 25, 2012 [Page 4]

Internet-Draft REPP April 2012

 EPP RFCs - This is a reference to the EPP version 1.0
 specifications [RFC5730], [RFC5731], [RFC5732] and [RFC5733].

 Stateful EPP - The definition according to Section 2 of [RFC5730].

 Stateless EPP or REPP - The RESTful EPP interface described in
 this document.

 URL - A Uniform Resource Locator as defined in [RFC3986].

 Resource - A network data object or service that can be identified
 by a URL.

 Interface mapping - The mapping of [RFC5730] XML commands to
 Stateless EPP.

3. Conventions Used in This Document

 XML is case sensitive. Unless stated otherwise, XML specifications
 and examples provided in this document MUST be interpreted in the
 character case presented to develop a conforming implementation.

4. Stateless EPP or REPP

 REPP is designed to solve, in the spirit of [RFC3375], the drawbacks
 as mentioned in the next paragraph and yet maintain compatibility
 with existing object mapping definitions.

 The design intent is to provide a clear, clean and self-explanatory
 interface that can easily be integrated with existing software
 systems. On the basis of these principles a [REST] architectural
 style was chosen. A client interacts with a REPP server via HTTP
 requests.

 A server implementing REPP, MUST NOT keep any client state and is not
 compatible with [RFC5730], Section 2, which explicitly states that
 EPP is stateful.

 REPP cannot be classified as an EPP transport mapping as defined in
 [RFC5730], Section 2.1. With REPP, the EPP [RFC5730] XML commands
 are mapped to a REST interface and as such, RESTful EPP is regarded
 as an interface mapping. Since REPP relies on a newly defined XSD
 schema with protocol elements, RESTful EPP can also be referred to as
 an [RFC5730], Section 2.7.1 protocol extension.

Wullink, et al. Expires October 25, 2012 [Page 5]

Internet-Draft REPP April 2012

5. Drawbacks Associated with Stateful EPP

 [RFC5734] requires a stateful TCP session between a client and the
 EPP server. Often this is accomplished by setting up a session with
 a <login> and keeping it alive for some time before issuing a
 <logout>. This may pose challenges in load-balanced environments,
 when a running session for whatever reason suddenly has to be
 switched from one EPP server to another and state is kept on a per
 server basis.

 [RFC5734] EPP sessions can wind up in a state where they are no
 longer linked to an active TCP connection, especially in an
 environment where TCP connectivity is flaky. This may raise problems
 in situations where session limits are enforced.

 REPP is designed to avoid these drawbacks, hence making the
 interaction between an EPP client and an EPP server more robust and
 efficient.

6. EPP Extension Framework

 According to [RFC3735], Section 2, EPP provides an extension
 framework that allows features to be added at the protocol, object,
 and command-response levels. RESTful EPP (REPP) affects the
 following levels:

 Protocol extension: RESTful EPP defines a new namespace
 "urn:ietf:params:xml:ns:restful-epp-1.0". It declares new
 elements, which MUST be used for RESTful EPP. The root element
 for the new namespace is the <rest> element. This element MUST
 contain an object mapping defined by the object mapping schemas.

 Object extension: RESTful EPP does not define any new object level
 extensions. The existing object level extensions can be reused.
 However, any existing object mapping element, including any added
 extension elements it might contain, SHALL be added as a child to
 the new <rest> element.

 Command-Response extension: RESTful EPP does not use the "command"
 concept, because the ’command’ concept is part of a RPC style and
 not a RESTful style. A REST URL and HTTP method combination have
 replaced the command structure. All command extensions can be
 reused as a rest extension.

 RESTful EPP reuses the existing response messages defined in the
 EPP RFCs. The EPP response MUST be added to the standard <epp>
 element and SHALL NOT be part of any <rest> element.

Wullink, et al. Expires October 25, 2012 [Page 6]

Internet-Draft REPP April 2012

 The DNSSEC [RFC5910], E.164 number [RFC4114] and ENUM validation
 information [RFC5076] extension mapping elements can be added as
 children of the <rest> element.

7. Resource Naming Convention

 A resource can be a single unique object identifier e.g. a domain
 name, or a collection of objects. The complete set of objects a
 client can use in registry operations MUST be identified by {context-
 root}/{version}/{collection}

 o {context-root} is the base URL which MUST be specified by each
 registry.

 o {version} is a label which identifies the interface version. This
 is the equivalent of the <version> element in the EPP RFCs.

 o {collection} MUST be substituted by "domains", "hosts" or
 "contacts", referring to either [RFC5731], [RFC5732] or [RFC5733].

 o A trailing slash MAY be added to each request. Implementations
 MUST consider requests which only differ with respect to this
 trailing slash as identical.

 A specific object instance MUST be identified by {context-root}/
 {version}/{collection}/{id} where {id} is a unique object identifier
 described in EPP RFCs.

 An example domain name resource following this naming convention,
 would look like this:

 /rest/v1/domains/example.com

 The level below a collection MUST be used to identify a object
 instance, the level below an object instance MUST be used to identify
 attributes of the object instance.

 With RESTful EPP the object identifiers are embedded in URLs. This
 makes any object identifier in the request messages superfluous.
 However, since the goal of RESTful EPP is to stay compatible with the
 existing EPP object mapping schemas, this redundancy is accepted as a
 trade off. Removing the object identifier from the request message
 would require new object mapping schemas.

 The server MUST return HTTP Status-Code 412 when the object
 identifier (for example <domain:name>, <host:name> or <contact:id>)
 in the HTTP message-body does not match the {id} object identifier in

Wullink, et al. Expires October 25, 2012 [Page 7]

Internet-Draft REPP April 2012

 the URL.

8. Message Exchange

 A [RFC5730] request includes a command- and object mapping to which a
 command must be applied. With RESTful EPP, some of the request
 messages are expressed by a combination of a resource and an HTTP
 method.

 Data (payload) belonging to a request is put into the HTTP message-
 body or into an HTTP request-header, depending on the nature of the
 request as defined in Section 9.

 An HTTP request MUST contain no more than one EPP message. HTTP
 requests MUST be processed independently of each other and in the
 same order as the server receives them.

8.1. HTTP Method Definitions

 The operations on resources MUST be performed by an HTTP method. The
 server MUST support the following "verbs" ([REST]).

 GET: Request a representation of a resource or a collection of
 resources.

 PUT: Update an existing resource.

 POST: Create a new resource.

 DELETE: Delete an existing resource.

 HEAD: Check for the existence of a resource.

 OPTIONS: Request a greeting.

8.2. REPP Request

8.2.1. Payload Data

 The payload data of a RESTful EPP request can be transmitted to the
 server using the POST, PUT and GET HTTP methods.

 POST and PUT: Payload data, when required, MUST be added to the
 message-body.

Wullink, et al. Expires October 25, 2012 [Page 8]

Internet-Draft REPP April 2012

 GET: When payload data is required, it concerns <authInfo>. This
 SHALL be put in the "X-REPP-authinfo" HTTP request-header.

8.2.2. Request Headers

 HTTP request-headers are used to transmit additional or optional
 request data to the server. All RESTful EPP HTTP headers must have
 the "X-REPP-" prefix.

 X-REPP-cltrid: The client transaction identifier is the equivalent
 of the <clTRID> element in the EPP RFCs and MUST be used
 accordingly. When this header is present in a client request, an
 equivalent element in the message-body MAY also be present, but
 MUST than be consistent with the header.

 X-REPP-authinfo: The X-REPP-authinfo request-header is the
 alternative of the <authInfo> element in the EPP RFCs and MUST be
 used accordingly. It MUST contain the entire authorization
 information element as mentioned in Section 11.1.

8.2.3. General Headers

 General-headers MAY be used as defined in HTTP/1.1 [RFC2616]. For
 REPP, the following general-headers are REQUIRED in HTTP requests.

 Accept-Language: This request-header is equivalent to the <lang>
 element in the EPP <login> command, expect that the usage of this
 header by the client is OPTIONAL. The server MUST support the use
 of HTTP Accept-Language header in client requests. The client MAY
 issue a <hello> to discover the languages known by the server.
 Multiple servers in a load-balanced environment SHOULD reply with
 consistent <lang> elements in a <greeting>. Clients SHOULD NOT
 expect that obtained <lang> information remains consistent between
 different requests. Languages not supported by the server default
 to "en".

8.3. REPP Response

 The server response is made up out of a HTTP Status-Code, HTTP
 response-headers and it MAY contain an EPP XML message in the HTTP
 message-body.

8.3.1. Response Headers

 HTTP response-headers are used to transmit additional response data
 to the client. All RESTful EPP HTTP headers must have the "X-REPP-"
 prefix.

Wullink, et al. Expires October 25, 2012 [Page 9]

Internet-Draft REPP April 2012

 X-REPP-svtrid: This header is the equivalent of the <svTRID> element
 in the EPP RFCs and MUST be used accordingly. If an HTTP message-
 body with the EPP XML equivalent <svTRID> exists, both values MUST
 be consistent.

 X-REPP-cltrid: This header is the equivalent of the <clTRID> element
 in the EPP RFCs and MUST be used accordingly. If an HTTP message-
 body with the EPP XML equivalent <clTRID> exists, both values MUST
 be consistent.

 X-REPP-eppcode: This header is the equivalent of the <result code>
 element in te EPP RFCs and MUST be used accordingly.If an HTTP
 message-body with The EPP XML equivalent <result code> exists,
 both values MUST be consistent.

 X-REPP-avail: The EPP avail header is the alternative of the "avail"
 attribute of the <object:name> element in a check response and
 MUST be used accordingly.

8.3.2. General Headers

 General-headers MAY be used as defined in HTTP/1.1 [RFC2616]. For
 REPP, the following general-headers are REQUIRED in HTTP responses.

 Cache-Control: This general-header... [TBD: the idea is to prohibit
 caching. Even though it will probably work and be useful in some
 scenario’s, it also complicates matters.]

 Connection: The server MUST add the "Connection: close" general-
 header to each HTTP response.

8.4. Error Handling

 RESTful EPP is designed atop of the HTTP protocol, both are an
 application layer protocol with their own status- and result codes.
 The value of an EPP result code and HTTP Status-Code MUST remain
 independent of each other. E.g. an EPP result code indicating an
 error can be combined with an HTTP request with Status-Code 200.

 HTTP Status-Code: MUST only return status information related to the
 HTTP protocol, When there is a mismatch between the object
 identifier in the HTTP message-body and the resource URL HTTP
 Status-Code 412 MUST be returned.

 The following EPP result codes specify an interface-,
 authorization-, authentication- or an internal server error and
 MUST NOT be used in RESTful EPP. Instead, when the related error
 occurs, an HTTP Status-Code MUST be returned in accordance to the

Wullink, et al. Expires October 25, 2012 [Page 10]

Internet-Draft REPP April 2012

 mapping shown in Table 1.

 EPP result code: MUST only return EPP result information relating to
 the EPP protocol. The HTTP header "X-REPP-eppcode" MUST be used
 for EPP result code information.

 EPP result code and HTTP Status-Code mapping.

 +--+------------------+
 | EPP result code | HTTP Status-Code |
 +--+------------------+
 | 2000 unknown command | 400 |
 | 2201 authorization error | 401 |
 | 2202 Invalid authorization information | 401 |
 | 2101 unimplemented command | 501 |
 +--+------------------+

 Table 1

9. Interface Mapping

 This section describes the details of the REST interface by referring
 to the [RFC5730] Section 2.9 Protocol Commands and defining how these
 are mapped to a REST request.

 Each RESTful operation consists of four parts: 1) the resource, 2)
 the HTTP method 3) the request payload, which is the HTTP message-
 body of the request, 4) the response payload, being the HTTP message-
 body of the response.

 The following table lists them all and the subsequent sections
 provide details for each request. Each URL in the table is prefixed
 with "/rest/v1/". To make the table fit we use the following
 abbreviations:

 {c}: An abbreviation for {collection}: this MUST be substituted with
 "domains", "hosts", "contacts" or "messages".

 {i}: An abbreviation for {id}: a domain name, host name, contact id
 or a message id.

 (opt): The item is optional.

Wullink, et al. Expires October 25, 2012 [Page 11]

Internet-Draft REPP April 2012

 Command mapping from Stateful EPP to Stateless EPP.

 +---------------+-------------------+----------------+--------------+
 | EPP command | RESTful EPP | Request | Response |
 | | resource | payload | payload |
 +---------------+-------------------+----------------+--------------+
Hello	OPTIONS /	N/A	<greeting>
Login	N/A	N/A	N/A
Logout	N/A	N/A	N/A
Check	HEAD {c}/{i}	N/A	N/A
Info	GET {c}/{i}	AUTH(opt)	<info>
Poll request	GET messages	N/A	<poll>
Poll ack	DELETE	N/A	<poll> ack
	messages/{i}		
Transfer	GET	AUTH(opt)	<transfer>
(query)	{c}/{i}/transfer		
New password	PUT password	password	N/A
Create	POST {c}	<create>	<create>
Delete	DELETE {c}/{i}	N/A	<delete>
Renew	PUT	<renew>	<renew>
	{c}/{i}/validity		
Transfer	POST	<transfer>	<transfer>
(create)	{c}/{i}/transfer		
Transfer	DELETE	N/A	<transfer>
(cancel)	{c}/{i}/transfer		
Transfer	PUT	N/A	<transfer>
(approve)	{c}/{i}/transfer		
Transfer	DELETE	N/A	<transfer>
(reject)	{c}/{i}/transfer		
Update	PUT {c}/{i}	<update>	<update>
 +---------------+-------------------+----------------+--------------+

 Table 2

9.1. Hello

 o Request: OPTIONS /

 o Request payload: N/A

 o Response payload: <greeting>

 The <greeting> (Section 2.4 RFC 5730) MUST NOT be automatically
 transmitted by the server with each new HTTP connection. The server
 MUST send a <greeting> element in response to a OPTIONS method on the
 root "/" resource.

 A stateless EPP client MUST NOT use a <hello> XML payload.

Wullink, et al. Expires October 25, 2012 [Page 12]

Internet-Draft REPP April 2012

9.2. Password

 o Request: PUT password/

 o Request payload: New password

 o Response payload: N/A

 The client MUST use the HTTP PUT method on the password resource.
 This is the equivalent of the <newPW> element in the <login> command
 described in [RFC5730]. The request message-body MUST contain the
 new password which MUST be encoded using Base64 [RFC4648].

 After a successful password change, the HTTP header "X-REPP-eppcode"
 must contain EPP result code 1000, otherwise an appropriate 2xxx
 range EPP result code.

9.3. Session Management Resources

 The server MUST NOT create a client session. Login credentials MUST
 be added to each client request. This SHOULD be done with any of the
 well known HTTP authentication mechanisms. Basic authentication MAY
 be used but MUST be combined with TLS [RFC5246] for added security.

 To protect information exchanged between an EPP client and an EPP
 server [RFC5734] Section 9 level of security is REQUIRED.

9.3.1. Login

 The <login> command MUST NOT be implemented by a server. The <newPW>
 element has been replaced by the Password resource. The <lang>
 element has been replaced by the Accept-Language HTTP request-header.
 The <svcs> element has no equivalent in RESTful EPP, the client can
 use a <hello> to discover the server supported namespace URIs. The
 server MUST check every XML namespace used in client XML requests.
 An unsupported namespace MUST result in the appropriate EPP result
 code.

9.3.2. Logout

 The <logout> command MUST NOT be implemented by the server. The
 server MUST add the "Connection: close" HTTP general-header to each
 response.

9.4. Query Resources

Wullink, et al. Expires October 25, 2012 [Page 13]

Internet-Draft REPP April 2012

9.4.1. Check

 o Request: HEAD {collection}/{id}

 o Request payload: N/A

 o Response payload: N/A

 The HTTP header X-REPP-avail with a value of "1" or "0" is returned,
 depending on whether the object can be provisioned or not.

 A <check> request MUST be limited to checking only one resource {id}
 at a time. This may seem a step backwards when compared to the check
 command defined in the object mapping of the EPP RFCs where multiple
 object-ids are allowed inside a check command. The RESTful version
 of the check is however more efficient.

 The server MUST NOT support any <object:reason> elements described in
 the EPP object mapping RFCs.

9.4.2. Info

 o Request: GET {collection}/{id}

 o Request payload: OPTIONAL X-REPP-authinfo HTTP header with
 <authInfo>.

 o Response payload: Object <info> response.

 A object <info> request MUST be performed with the HTTP GET method on
 a resource identifying an object instance. The response MUST be a
 response message as described in object mapping of the EPP RFCs,
 possibly extended with an [RFC3915] extension element (<rgp:
 infData>).

9.4.2.1. Domain Name

 A domain name <info> differs from a contact- and host <info> in the
 sense that EPP Domain Name Mapping [RFC5731], Section 3.1.2 describes
 an OPTIONAL "hosts" attribute for the <domain:name> element. This
 attribute is mapped to additional REST resources to be used in a
 domain name info request.

 The specified default value is "all". This default is mapped to a
 shortcut, the resource object instance URL without any additional
 labels.

Wullink, et al. Expires October 25, 2012 [Page 14]

Internet-Draft REPP April 2012

 o default: GET domains/{id}

 o Hosts=all: GET domains/{id}/all

 o Hosts=del: GET domains/{id}/del

 o Hosts=sub: GET domains/{id}/sub

 o Hosts=none: GET domains/{id}/none

 The server MAY require the client to include additional authorization
 information. The authorization data MUST be sent with the "X-REPP-
 authinfo" HTTP request-header.

9.4.3. Poll

9.4.3.1. Poll Request

 o Request: GET messages/

 o Request payload: N/A

 o Response payload: Poll request response message.

 A client MUST use the HTTP GET method on the messages collection to
 request the message at the head of the queue.

9.4.3.2. Poll Ack

 o Request: DELETE messages/{id}

 o Request payload: N/A

 o Response payload: Poll ack response message

 A client MUST use the HTTP DELETE method on a message instance to
 remove the message from the message queue.

9.4.4. Transfer Query Op

 o Request: GET {collection}/{id}/transfer

 o Request payload: Optional X-REPP-authinfo HTTP header with
 <authInfo>

 o Response payload: Transfer query response message.

 A <transfer> query MUST be performed with the HTTP GET method on the

Wullink, et al. Expires October 25, 2012 [Page 15]

Internet-Draft REPP April 2012

 transfer resource of a specific object instance.

9.5. Object Transform Resources

9.5.1. Create

 o Request: POST {collection}/

 o Request payload: Object <create>.

 o Response payload: Object <create> response.

 A client MUST create a new object with the HTTP POST method in
 combination with an object collection.

9.5.2. Delete

 o Request: DELETE {collection}/{id}

 o Request payload: N/A

 o Response payload: Object <delete> response.

 Deleting an object from the registry database MUST be performed with
 the HTTP DELETE method on a REST resource specifying a specific
 object instance.

9.5.3. Renew

 o Request: PUT {collection}/{id}/validity

 o Request payload: Object <renew>.

 o Response payload: Object <renew> response.

 Renewing an object is only specified by [RFC5731], the <renew>
 command has been mapped to a validity resource.

9.5.4. Update

 o Request: PUT {collection}/{id}

 o Request payload: Object:update.

 o Response payload: Update response message

 An object <update> request MUST be performed with the HTTP PUT method
 on a specific object resource. The payload MUST contain an <object:

Wullink, et al. Expires October 25, 2012 [Page 16]

Internet-Draft REPP April 2012

 update> described in the EPP RFCs, possibly extended with [RFC3915]
 <update> extension elements.

9.5.5. Transfer

 Transferring an object from one sponsoring client to another is only
 specified in [RFC5731] and [RFC5733]. The <transfer> command has
 been mapped to a transfer resource.

 The semantics of the HTTP DELETE method are determined by the role of
 the client executing the method. For the current sponsoring
 registrar the DELETE method is defined as "reject transfer". For the
 new sponsoring registrar the DELETE method is defined as "cancel
 transfer".

9.5.5.1. Create Op

 o Request: POST {collection}/{id}/transfer

 o Request payload: <object:transfer>.

 o Response Payload: Transfer start response.

 Initiating a transfer MUST be done by creating a new "transfer"
 resource with the HTTP POST method on a specific domain name or
 contact object instance. The server MAY require authorization
 information to validate the transfer request.

9.5.5.2. Cancel Op

 o Request: DELETE {collection}/{id}/transfer

 o Request payload: N/A

 o Response payload: Transfer cancel response message.

 The new sponsoring client MUST use the HTTP DELETE method to cancel a
 requested transfer.

9.5.5.3. Approve Op

 o Request: PUT {collection}/{id}/transfer

 o Request payload: N/A

 o Response payload: Transfer approve response message.

 The current sponsoring client MUST use the HTTP PUT method to approve

Wullink, et al. Expires October 25, 2012 [Page 17]

Internet-Draft REPP April 2012

 a transfer requested by the new sponsoring client.

9.5.5.4. Reject Op

 o Request: DELETE {collection}/{id}/transfer

 o Request payload: N/A

 o Response payload: Transfer reject response message

 The current sponsoring client MUST use the HTTP DELETE method to
 reject a transfer requested by the new sponsoring client.

10. Transport Considerations

 Section 2.1 of the EPP core protocol specification [RFC5730]
 describes considerations to be addressed by protocol transport
 mappings. This document addresses each of the considerations using a
 combination of features described in this document and features
 provided by HTTP as follows:

 o HTTP is an application layer protocol which uses TCP as a
 transport protocol. TCP includes features to provide reliability,
 flow control, ordered delivery, and congestion control. Section
 1.5 of RFC 793 describes these features in detail; congestion
 control principles are described further in RFC 2581 and RFC 2914.
 HTTP is a stateless protocol and as such it does not maintain any
 client state or session.

 o The stateful nature of EPP is no longer preserved through managed
 sessions. There still is a controlled message exchanges because
 HTTP uses TCP as transport layer protocol.

 o HTTP 1.1 allows persistent connections which can be used to send
 multiple HTTP requests to the server using the same connection.
 The server MUST NOT allow persistent connections.

 o The server MUST NOT allow pipelining and return EPP result code
 2002 if pipelining is detected.

 o Batch-oriented processing (combining multiple EPP commands in a
 single HTTP request) MUST NOT be permitted.

 o Section 8 of this document describes features to frame EPP request
 data by adding the data to an HTTP request message-body or
 request-header.

Wullink, et al. Expires October 25, 2012 [Page 18]

Internet-Draft REPP April 2012

 o A request processing failure has no influence on the processing of
 other requests. The stateless nature of the server allows a
 client to retry a failed request or send another request.

11. Formal Syntax

 The extension used by RESTful EPP is specified in XML Schema
 notation. The formal syntax presented here is a complete schema
 representation of RESTful EPP suitable for automated validation of
 EPP XML instances. The schema is based on the XML schemas defined in
 [RFC5730]. [RFC3735] Section 2.3 states that it MUST be announced in
 the <greeting> element.

Wullink, et al. Expires October 25, 2012 [Page 19]

Internet-Draft REPP April 2012

11.1. RESTful EPP XML Schema

 The RESTful EPP Schema.

 <?xml version="1.0" encoding="UTF-8"?>
 <schema xmlns:repp="urn:ietf:params:xml:ns:restful-epp-1.0"
 xmlns:epp="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns="HTTP://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:restful-epp-1.0"
 elementFormDefault="qualified">

 <!-- Import common element types. -->
 <import namespace="urn:ietf:params:xml:ns:eppcom-1.0"
 schemaLocation="eppcom-1.0.xsd"/>
 <import namespace="urn:ietf:params:xml:ns:epp-1.0"
 schemaLocation="epp-1.0.xsd"/>

 <annotation>
 <documentation>
 RESTful EPP schema.
 </documentation>
 </annotation>

 <!-- The rest element should be used as extension root. -->
 <element name="rest" type="epp:extAnyType"/>

 <!-- A request which requires auth info can use this
 authorization shortcut without an object id. -->

 <element name="authorization" type="re:authInfoType"/>

 <!-- The authinfo element. For use with domain and host info
 and domain transfer. -->
 <complexType name="authInfoType">
 <choice>
 <element name="pw" type="eppcom:pwAuthInfoType"/>
 <element name="ext" type="eppcom:extAuthInfoType"/>
 </choice>
 </complexType>

 </schema>

 Figure 1

Wullink, et al. Expires October 25, 2012 [Page 20]

Internet-Draft REPP April 2012

12. IANA Considerations

 [TBD: This draft defines three resource collections; domains,
 contacts, hosts. This may require an IANA RESTful EPP collection
 protocol registry. RFC3688 defines an IANA XML Registry and
 ’restful-epp-1.0’ defined here would have to be added to that:
 http://www.iana.org/assignments/xml-registry-index.html]

13. Internationalization Considerations

 [TBD: Do we need them?]

14. Security Considerations

 RFC 5730 describes a <login> command for transmitting client
 credentials. This command MUST NOT be used for RESTful EPP. Due to
 the stateless nature of REST clients MUST transmit their credentials
 with each request. The validation of the user credentials must be
 performed by an out-of-band mechanism. This could be done with Basic
 and Digest access authentication [RFC2617] or with the use of OAuth
 [RFC5849].

 EPP does not use XML encryption to protect messages. Furthermore,
 RESTful EPP HTTP servers are vulnerable to common denial-of-service
 attacks. Therefore, the security considerations of [RFC5734] also
 apply to RESTful EPP.

15. Obsolete EPP Result Codes

 The following result codes specified in [RFC5730] are no longer
 meaningful in RESTful EPP and MUST NOT be used.

 +------+--+
 | Code | Reason |
 +------+--+
1500	The logout command is not used anymore.
2002	Commands can now be sent in any order.
2100	The protocol version is embedded in the base URL of the
	interface.
2200	The login command is not used anymore.
 +------+--+

16. References

Wullink, et al. Expires October 25, 2012 [Page 21]

Internet-Draft REPP April 2012

16.1. Normative References

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

 [RFC3915] Hollenbeck, S., "Domain Registry Grace Period Mapping for
 the Extensible Provisioning Protocol (EPP)", RFC 3915,
 September 2004.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 STD 69, RFC 5730, August 2009.

 [RFC5731] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Domain Name Mapping", STD 69, RFC 5731, August 2009.

 [RFC5732] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Host Mapping", STD 69, RFC 5732, August 2009.

 [RFC5733] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Contact Mapping", STD 69, RFC 5733, August 2009.

 [RFC5734] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Transport over TCP", STD 69, RFC 5734, August 2009.

16.2. Informative References

 [RFC3375] Hollenbeck, S., "Generic Registry-Registrar Protocol
 Requirements", RFC 3375, September 2002.

 [RFC3735] Hollenbeck, S., "Guidelines for Extending the Extensible

Wullink, et al. Expires October 25, 2012 [Page 22]

Internet-Draft REPP April 2012

 Provisioning Protocol (EPP)", RFC 3735, March 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4114] Hollenbeck, S., "E.164 Number Mapping for the Extensible
 Provisioning Protocol (EPP)", RFC 4114, June 2005.

 [RFC5076] Hoeneisen, B., "ENUM Validation Information Mapping for
 the Extensible Provisioning Protocol", RFC 5076,
 December 2007.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC5910] Gould, J. and S. Hollenbeck, "Domain Name System (DNS)
 Security Extensions Mapping for the Extensible
 Provisioning Protocol (EPP)", RFC 5910, May 2010.

Appendix A. Examples

 In these examples, lines starting with "C:" represent data sent by a
 protocol client and lines starting with "S:" represent data returned
 by a REPP protocol server. Indentation and white space in examples
 are provided only to illustrate element relationships and are not
 REQUIRED features of this protocol.

A.1. X-REPP-authinfo

A.1.1. Domain Info with Authorization Data

 The X-REPP-authinfo header in a Domain Info Request might look like
 this:

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 <extension>
 <re:rest xmlns:re="urn:ietf:params:xml:ns:restful-epp-1.0">
 <re:authorization>
 <re:pw>passwordfordomain</re:pw>
 </re:authorization>
 </re:rest>
 </extension>
 </epp>

 So this HTTP header MUST contain the entire authorization information

Wullink, et al. Expires October 25, 2012 [Page 23]

Internet-Draft REPP April 2012

 element as mentioned in Section 11.1.

A.2. Hello Example

A.2.1. RESTful <hello> Request:

 C: OPTIONS /rest/v1/ HTTP/1.1
 C: Host: repp.example.com
 C: Cache-Control: no-cache
 C: Authorization: Basic amRvZTp0ZXN0
 C: Pragma: no-cache
 C: Accept: application/epp+xml
 C: Accept-Encoding: gzip,deflate
 C: Accept-Language: en
 C: Accept-Charset: utf-8

A.2.2. RESTful <hello> Response:

 S: HTTP/1.1 200 OK
 S: Date: Sun, 10 Apr 2012 12:00:00 UTC
 S: Server: Acme REPP server v1.0
 S: Content-Length: 799
 S: Content-Type: application/epp+xml
 S: Connection: close
 S:
 S: <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S: <epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <greeting>
 S: <!-- rest of the greeting elements -->
 S: </greeting>
 S: </epp>

A.3. Password Example

A.3.1. RESTful Change Password Request:

 C: PUT /rest/v1/password/ HTTP/1.1
 C: Host: repp.example.com
 C: Cache-Control: no-cache
 C: Authorization: Basic amRvZTp0ZXN0
 C: Pragma: no-cache
 C: Accept-Language: en
 C: Accept-Charset: utf-8
 C: X-REPP-cltrid: ABC-12345
 C: Content-Type: text/plain
 C: Content-Length: 44
 C:
 C: bWFpbG1lYXQ6bWFhcnRlbi53dWxsaW5rQHNpZG4ubmw=

Wullink, et al. Expires October 25, 2012 [Page 24]

Internet-Draft REPP April 2012

A.3.2. RESTful Change Password Response:

 S: HTTP/1.1 200 OK
 S: Date: Sun, 10 Apr 2012 12:00:00 UTC
 S: Server: Acme REPP server v1.0
 S: Content-Language: en
 S: Content-Length: 0
 S: X-REPP-cltrid: ABC-12345
 S: X-REPP-svtrid: 54321-XYZ
 S: X-REPP-eppcode: 1000
 S: Connection: close

A.4. Domain Create Example

A.4.1. RESTful Domain Create Request:

 C: POST /rest/v1/domains/ HTTP/1.1
 C: Host: repp.example.com
 C: Cache-Control: no-cache
 C: Authorization: Basic amRvZTp0ZXN0
 C: Pragma: no-cache
 C: Accept-Language: en
 C: Accept-Charset: utf-8
 C: Accept: application/epp+xml
 C: X-REPP-cltrid: ABC-12345
 C: Content-Type: text/plain
 C: Content-Length: 543

 C: <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C: <epp xmlns="urn:ietf:params:xml:ns:epp-1.0"
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <extension>
 C: <re:rest xmlns:re="urn:ietf:params:xml:ns:restful-epp-1.0">
 C: <domain:create>
 C: <!-- Object specific elements-->
 C: </domain:create>
 C: </re:rest>
 C: </extension>
 C: </epp>

Wullink, et al. Expires October 25, 2012 [Page 25]

Internet-Draft REPP April 2012

A.4.2. RESTful Domain Create Response:

 S: HTTP/1.1 200 OK
 S: Date: Sun, 10 Apr 2012 12:00:00 UTC
 S: Server: Acme REPP server v1.0
 S: Content-Language: en
 S: Content-Length: 642
 S: X-REPP-cltrid: ABC-12345
 S: X-REPP-svtrid: 54321-XYZ
 S: X-REPP-eppcode: 1000
 S: Content-Type: application/epp+xml
 S: Connection: close

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:creData
 S: <!-- Object specific elements-->
 S: </domain:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

A.5. Domain Delete Example

A.5.1. RESTful Domain Delete Request:

 C: DELETE /rest/v1/domains/example.com HTTP/1.1
 C: Host: repp.example.com
 C: Cache-Control: no-cache
 C: Authorization: Basic amRvZTp0ZXN0
 C: Pragma: no-cache
 C: Accept-Language: en
 C: Accept-Charset: utf-8
 C: X-REPP-cltrid: ABC-12345

Wullink, et al. Expires October 25, 2012 [Page 26]

Internet-Draft REPP April 2012

A.5.2. RESTful Domain Delete Response:

 S: HTTP/1.1 200 OK
 S: Date: Sun, 10 Apr 2012 12:00:00 UTC
 S: Server: Acme REPP server v1.0
 S: Content-Language: en
 S: Content-Length: 505
 S: X-REPP-cltrid: ABC-12345
 S: X-REPP-svtrid: 54321-XYZ
 S: X-REPP-eppcode: 1000
 S: Content-Type: application/epp+xml
 S: Connection: close

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

Authors’ Addresses

 Maarten Wullink
 SIDN
 Meander 501
 Arnhem, 6825 MD
 NL

 Phone: +31 26 3525555
 Email: maarten.wullink@sidn.nl
 URI: https://sidn.nl/

Wullink, et al. Expires October 25, 2012 [Page 27]

Internet-Draft REPP April 2012

 Marco Davids
 SIDN Labs
 Meander 501
 Arnhem, 6825 MD
 NL

 Phone: +31 26 3525555
 Email: marco.davids@sidn.nl
 URI: https://sidn.nl/

 R. (Miek) Gieben
 SIDN Labs
 Meander 501
 Arnhem, 6825 MD
 NL

 Phone: +31 26 3525555
 Email: miek.gieben@sidn.nl
 URI: https://sidn.nl/

Wullink, et al. Expires October 25, 2012 [Page 28]

