2STIC Experimenting with the SCION Internet architecture

Caspar Schutijser, Ralph Koning (SIDN Labs) Advanced Networking guest lecture, UT Oct. 17th, 2022

25TiC program

Goal: put Dutch and European internet communities in a leading position in the field of secure, stable and transparent inter-network communication

UNIVERSITY OF AMSTERDAM

UNIVERSITY **OF TWENTE**.

Operator of the .nl TLD

- Stichting Internet Domeinregistratie Nederland (SIDN)
- Critical infrastructure services
 - Lookup IP address of a domain name (almost every interaction)
 - Registration of all .nl domain names
 - Manage fault-tolerant and distributed infrastructure
- Increase the value of the Internet in the Netherlands and elsewhere
 - Enable safe and novel use of the Internet
 - Improve the security and resilience of the Internet itself

.nl = the Netherlands

17M inhabitants 6.2M domain names 3.4M DNSSEC-signed 2.5B DNS queries/day 8.6B NTP queries/day

SIDN fonds

SIDN Labs = research team

- Goal: increase the trustworthiness (security, stability, resilience, and transparency) of our society's internet infrastructure, for .nl and the Netherlands in particular
- Strategies:
 - Applied technical research (measurements, design, prototyping, evaluation)
 - Make results publicly available and useful for various target groups
 - Work with universities, infrastructure operators, and other labs
- Three research areas: network security (DNS, NTP, BGP), domain name & IoT security, trusted future internet infrastructures

SIDN Labs team

Caspar Schutijser Research Engineer

Elmer Lastdrager Research Engineer

Giovane Moura Data Scientist

Jelte Jansen Research Engineer

Marco Davids **Research Engineer**

Marisca van der Donk Managementassistente

Moritz Müller **Research Engineer**

Ralph Koning Research Engineer

Thymen Wabeke **Research Engineer**

Cristian Hesselman Directeur SIDN Labs

Maarten Wullink **Research Engineer**

Thijs van den Hout **Research Engineer**

- Technical experts, diverse in seniority and nationality
 - Help SIDN teams, write open-source software, analyze large amounts of data, conduct experiments, write articles, collaborate with universities
- M.Sc students help us advance specific areas

1997

source: https://www.opte.org

The Internet

2021

Rate of change

New Requirements

- requirements
 - surgery)
- responsible internet
 - Control over routing and verification of operational behavior

New applications have new security, stability and transparency

• More interaction with physical space (e.g., transport, smart grids, drones, remote

To provide trust and and confidence in communication we need a

SCION NDN RINA ManyNets XIA MobilityFirst Nebula Service-centric networking FII B4

. . .

Some new inter-domain networked architectures.

Opening up

- Adoption of new protocols in technologies was slow, but network devices are opening up.
- (ONIE) Open Network Install Environment offers OS choice on network equipment.
- OpenFlow/SDN offer control plane programmability.
- P4 provides data plane programmability.

Potentially promising clean slate architectures

- RINA
 - Everything is IPC
 - WIP implementations: ProtoRINA, OpenIRATI
- NDN
 - Data centric
 - Stateful, lots of caching in the network
 - Implementation: named-data.net
- SCION
 - Path selection
 - Active community
 - Implementation: github.com/scionproto

S

_

- Scalability, Control, and Isolation On Next-generation Networks
- New internet architecture
- Network Security Group, ETH Zurich
- Goal: improve security of inter-domain routing and isolation of compromise
- Scalability and security through Isolation Domains (ISDs)
 - Group of autonomous systems
 - E.g., per country or jurisdiction

- Security by design
 - Routes authenticated both in control and data plane
- Path-aware networking
 - Sender selects path
 - Enables, for example, geofencing
- Multi-path communication
 - Can be used, for example, for redundancy
- Existing application can still be used

Isolation domains

- Group of autonomous systems
 - E.g., per country or jurisdiction
- ISD core: ASes managing the ISD
- Core AS: AS part of the ISD core
- PKI organised per ISD
- Hierarchical control plane
 - Inter-ISD control plane
 - Intra-ISD control plane

Source: The SCION Internet Architecture: An Internet Architecture for the 21st Century, Barrera et al., 2017

Deployment

- Open source implementation available
 - https://github.com/scionproto/scion
- International testbed SCIONLab
 - https://www.scionlab.org/
- Production network managed by spin-off Anapaya
- In use at banks, government and hospitals
- Talks with research & education networks for a production deployment

Deployment

Can be combined with existing applications using SCION-IP Gateway

SCION and P4

- Implementation of SCION in P4 for the Intel Tofino
- Shared experiences with SCION team
 - Challenging to go from software to hardware implementation
 - Implementing scion in hardware required changes to protocol headers
- Blog post: <u>sidnlabs.nl/en/news-and-blogs/future-internet-at-terabit-</u> speeds-scion-in-p4
- Source code: <u>github.com/sidn/p4-scion</u>

SCIDN address structure

- An AS: ISD-AS
- A host inside an AS: **ISD-AS**, [address]
- Examples:
 - 19-ffaa:0:1305
 - 19-ffaa:0:1305, [127.0.0.1]
 - 19-ffaa:0:1305, [::1]

SCIONLab testbed

21

Break

_

SCIONLab exercises

- Make groups of (min) 2 students.
- Instructions at https://check.sidnlabs.nl/ralph/anet-lab/
- Scion-netcat at: https://check.sidnlabs.nl/ralph/anet-lab/scionnetcat.gz
- https://www.scionlab.org

2STIC Thanks for your attention!

Caspar Schutijser, Ralph Koning sidnlabs.nl 2stic.nl

