

Your world. Our domain.

Local Anycast at SIDN

Marco Davids

Joint 38th CENTR Technical / 12th CENTR R&D workshop Moscow (RU) - May 30rd 2018

Registry for .nl ccTLD

• And a number of other things (.aw, .politie, .amsterdam)

https://www.sidn.nl/

(as per may 9th 2018)

DNSSEC .nl domain names

SIDN Labs

Vacancies:

- 1 x Machine Learning Engineer
- 2 x Research Engineers on Emerging Internet Architectures

https://www.sidnlabs.nl/over-sidnlabs

Botnets / DDoS

Duizenden IoT-apparaten kwetsbaar door lek in softwarebibliotheek

dinsdag 18 juli 2017, 16:58 door Redactie, 17 reacties

The Solution: DNS global anycast

- Just a clever 'network hack' to provide (a lot of) resilience.
 - And better performance (shorter RTT's)
- Works with BGP
- Well understood solution, deployed in many places
 - The DNS root servers
 - 1.1.1.1, 8.8.8.8, 9.9.9.9, 64.6.64.6, OpenDNS and more
- Originally only in UDP environments
 - But proven in TCP environments as well (i.e. CloudFlare)

Problem solved...?

Problem solved, or...?

Peak Attack Size

.ABS

Source: NETSCOUT Arbor

Main cause: (insecure) IoT devices

Main cause: (insecure) IoT devices

Main cause: Record breaking DDoS attacks

A rat race we can't win.

Paradigm shift

(All resolvers are equal, but some resolvers are more equal than others)

Additional approach: DNS <u>local</u> anycast

- In essence the same principle as global anycast
- But with a deliberately <u>restricted catchment</u>.
- Dedicated instances for exclusive use by (big) ISP's
 - Focus on Netherlands
 - Must have reasonable abuse response capacities
 - Must comply to certain requirements (like BCP38 and IPv6)
- Nothing more, nothing less (basically)

Goals	Non Goals
Resilience (win the rat race)	Latency (in contrast to global anycast)
Availability (at least for our most important users)	Bandwidth (DNS doesn't consume that much, yet)

DNS local anycast – conclusion

It actually works!

For multiple TLD's.amsterdam, .aw, .politie

DNS local anycast – 'business model'

For mutual benefit:

- ISP / datacentre provides bandwidth, rack space, power and sometimes 'remote hands'
- SIDN provides equipment, operations and the service

DNS local anycast – current situation

- Local presence at 8 sites at ISP's
- One shared node (will explain later)
- ~ >80% of Dutch consumers "covered"

DNS local anycast – management (via VPN's)

DNS local anycast – lessons learned

Setup is overdone.

- Dell server, 32 Gig RAM, 1U
- Fancy Juniper EX switch for BGP, 1U
- Separate Juniper SRX switch for VPN, 1U
- A bit too much for only 50 qps...

DNS local anycast – lessons learned

Also...

- 'Legal challenges'
- 'Persuasion challenges', or getting in touch with the right people
- 'Not-in-scope challenges' (they want us, we don't really want them)
- It's quite a bit of work to setup and maintain
- Monitoring requires special attention
- So does tuning and tweaking
 - Like making sure partners keep it local and don't export the route

DNS local anycast – lessons learned

Also...

- 'Legal' challenges
- Persuasion challenges, or getting in touch with the right people
- Not in scope challenges (they want us, we don't really want them)

So we made a 'shared' local anycast node

DNS local anycast – Shared node

- Not with an ISP, but located at an IX
- No exclusive use by one party,
- but used by several, carefully selected peers
 - We may cut them off if they cause too much problems for others
- Works well for smaller parties, or for the other mentioned challenges

DNS local anycast – Future work

- Maybe a simple front-end and (hidden) big back-end?
 - DNSdist or CoreDNS forward/proxy and cache plugin maybe?

DNS local anycast – Future work

- Anycast-in-a-box
 - Single server with BGP (BIRD), DNS (i.e. BIND), VPN (i.e. FreeS/WAN)
 - Can be virtualized (including a Juniper vMX for instance)

SIDN Labs website

https://www.sidnlabs.nl/

Search for 'anycast':

Home + + Risk analysis of the .nl BGP (anycast) infrastructure

de Vries¹

of Twente

Heidemann³

Risk analysis of the .nl BGP (anycast) infrastructure

2: SIDN Labs

This project involves assessing how the failure of certain parts of the internet would affect the availability of the .nl domain and subordinate second-level domain names. For example, what impact would the failure of a major Tier-1 provider have? And how many .nl domain names would be rendered unreachable by the non-availability of a given Autonomous System Number (ASN)?

Ricardo de O. Schmidt^{1,2}

Pieter-Tjerk de Boer1

er: Broad and Load-Aware Anycast Mapping

Wes Hardaker³

3: USC/Information Sciences Institute

Recommendations for Engineering

UNIVERSITY DISTURBANE OF TWENTE

Authoritative DNS Servers

Giovane Moura¹, Ricardo Schmidt^{1,2}, Moritz Müller^{1,2},

Wouter B. de Vries², and John Heidemann³

³University of Southern California/Information Sciences Institute

IEPG Meeting @ IETF101

March 18th, 2018 London, UK

Evaluating the November 2015 Root DNS Event USC/ISI Technical Report ISI-TR-2016-709b May 2016, updated September 2016 John Heidemann³ Cristian Hesselman¹ Ricardo de O. Schmidt² 3: USC/Information Sciences Institute Giovane C. M. Moura¹ Moritz Müller¹ Wouter B. de Vries² 1: SIDN Labs 2: University of Twente

Thank You!

