Black-box security analysis of
state machine implementations

Joeri de Ruiter

18-03-2019

Agenda

1. Why are state machines interesting?
2. How do we know that the state machine is implemented correctly?

3. What can go wrong if the implementation is incorrect?

What are state machines?

* Almost every protocol includes some kind of state
* State machine is a model of the different states and the transitions between them
* When receiving a messages, given the current state:

* Decide what action to perform

* Which message to respond with

* Which state to go the next

Why are state machines interesting?

* State machines play a very important role in security protocols
* For example:

* Is the user authenticated?
* Did we agree on keys? And if so, which keys?
* Are we encrypting our traffic?

* Every implementation of a protocol has to include the corresponding state machine
* Mistakes can lead to serious security issues!

State machine example

Confirm transaction
Failed

Verify PIN 0000
Failed

Verify PIN 1234
OK

Confirm transaction
OK

LABS

State machines in specifications

* Often specifications do not explicitly contain a state machine
* Mainly explained in lots of prose

* Focus usually on happy flow
* What to do if protocol flow deviates from this?

Client Server
ClientHello —------- >
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest®*
<-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished aeeaaa- >
[ChangeCipherSpec]
<=------- Finished

LABS

Application Data <------- > Application Data

Implementation of state machines

* How do we know that a state machine is implemented correctly?
* Often state is implicitly included
* Test whether it works against other implementations?
* Typically only tests the happy flow
* What about invalid sequences that might lead to security vulnerabilities?
* Can we somehow extract the state machine from an implementation?

e State machine inference

State machine inference

* Black-box technique to extract state machines from implementations
* Only communication with the system
* All we need to know is how to construct messages
* Fuzzing of message order
* Useful for security analysis
* Discover vulnerabilities and bugs
* Provides interesting insights in the code
* Will not find carefully hidden backdoors

* Analysis can be done either manually of automated

State machine inference — example

.

LABS

State machine inference — example

— ClientHello
— ServerHello

ClientHello
ServerHello

LABS

State machine inference — example

— ClientHello
— ServerHello

ClientHello

— Other messages S Hell
ervermello

« Fatal alert / Connection close

LABS

State machine inference — example

— ClientHello
— ServerHello

— Other messages Other messages ClientHello
— Fatal alert / Connection close Fatal alert / Connection close ServerHello

LABS

State machine inference — example

— ClientHello
— ServerHello

— Other messages Other messages ClientHello
— Fatal alert / Connection close Fatal alert / Connection close ServerHello

— ClientHello, ClientHello
« Fatal alert / Connection close

LABS

State machine inference — example

— ClientHello
— ServerHello

— Other messages Other messages

« Fatal alert / Connection close Fatal alert / Connection close | ClientHello
ServerHello

— ClientHello, ClientHello
« Fatal alert / Connection close

ClientHello
Fatal alert / Connection close

B}

LABS

State machine inference - theory

* Deterministic Mealy machine
* Learner

* Tries to learn the state machine of an
implementation

Reset

: : [
* Constructs a hypothesis of the state machine
Output

* Teacher o aY
. . . >

* Knows the state machine of the implementation utpu

. . . Equivalence query

* Answers questions about the implementation >
<Yes / C'Iounterexamph.?

* Determines whether provided hypothesis is correct

State machine inference - practice

* Convert abstract input symbols used in the algorithms to bytes

* Convert responses back to abstract symbols

* Need some way to reset the system

* Equivalence checking needs to be approximated

* Basically, you need a stateless implementation of the protocol you want to analyse

command type

(plus possibly ISO7816
cryptogram type) command By«

—_— B —_—
|

-

status word response

(plus possibly
cryptogram type)

State machine inference - example

GET PROCESSING OPTIONS (valid)

GPO performed 3 SGET DATA (valid) / READ RECORD (valid)

DATA (valid) /| READ RECORD (valid) / VERIFY

Verify performed 3 O

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC / AAC
AAC

GENERATE AC 1st AAC
AAC

GENERATE AC 1st TC
TC

S @h’ LABS

’ Transaction finished

Analysed systems

* Bank cards (EMV)

 ABN-AMRO's e.dentifier2

* TLS
* Collection of well-known implementations
* OpenSSL versions from a 14 year period

* Wi-Fi (4-way handshake)

* OpenVPN, IPsec, TLS1.3, DTLS, and more

- https://w\

Statel.earner

* Tool to infer state machines from implementations
* Uses LearnLib developed at TU Dortmund
* Implementation of several learning and equivalence algorithms
* Built-in support for TLS and smart cards
* Can easily be extended to analyse other protocols

ABN-AMRO’s e.dentifier2

* Handheld reader used for online banking
* Provides what-you-see-is-what-you-sign functionality
* In theory a good idea...

* However, in previous manual analysis we found a serious flaw
* Can we automatically find this type of flaws?

LABS

Analysing the e.dentifier2

* Problem: the protocol involves pressing buttons
* Solution: LEGO!
* Push buttons on e.dentifier2 using a Lego robot
* Controlled by Raspberry Pi

* 3 motors: OK, Cancel, digit

* Power USB line
* Programmed own bank card
* https://youtu.be/hyQubPvAyq4

Lego robot

Lego robot

S \\\V% LABS

Lego robot

S @h’ LABS

e.dentifier2 protocol

Host PC USB reader Smartcard
ASK-PIN
>
Display shows "ENTER PIN”
|
User enters PIN
VERIFY pin guess
pin g >
PIN OK
<
PIN OK
3
SIGNDATA-DATA number >
SIGNDATA-TEXT text
>
Display shows text
[
User presses OK
User pressed OK
< P
GENERATE-AC
>
GENERATE_AC f(text, number) >
ARQC
< Q
GENERATE_AC f(text, number) >
AAC
<
ARQC
< 9(ARQC)
I I I

e.dentifier2 protocol

Host PC USB reader Smartcard
ASK-PIN
>
Display shows "ENTER PIN”
|
User enters PIN
VERIFY pin guess
pin g >
PIN OK
<
PIN OK
-
SIGNDATA-DATA number >
SIGNDATA-TEXT text
>
Display shows text
|
User presses OK
< User pressed OK O e.dentifier2 (D
GENERATE-AC
>
GENERATE_AC f(text, number) >
ARQC
< Q
GENERATE_AC f(text, number) >
AAC
€
< 9(ARQC) LABS

e.dentifier2 protocol

Host PC USB reader Smartcard
ASK-PIN
>
Display shows "ENTER PIN”
|
User enters PIN
VERIFY pin guess
pin g >
PIN OK
<
PIN OK
S
SIGNDATA-DATA number >
SIGNDATA-TEXT text
>
Display shows text
[
User presses OK
User pressed OK
< I
GENERATE-AC
>
GENERATE_AC f(text, number) >
ARQC
< Q
GENERATE_AC f(text, number) >
AAC
<
ARQC
< 9(ARQC)
I I I

e.dentifier2 protocol

Host PC USB reader Smartcard
ASK-PIN
>
Display shows "ENTER PIN”
|
User enters PIN
VERIFY pin guess
pin g >
PIN 0K
<
PIN OK
<
SIGNDATA-DATA number >
SIGNDATA-TEXT text
>
Display shows text
GENERATE-AC
>
GENERATE_AC f(text, number) >
ARQC
< Q
GENERATE_AC f(text, number) >
AAC
S
ARQC
< 9(ARQC)
I I I

Results e.dentifier2

___'- OMBINED_DATA [/ LONG_ERROR || LONG_ERRORUSB8_CRYPTOGRAM / LONG_ERRORROBOT_OK /[TIMEOUT

COMBINED_PIN / OK /JUSB8_CRYPTOGRAM [CRYPTOGRAM

PIN_verified g>ROBOT_OK/TIMEOUTDBCOMBINED_PIN / OK

ROBOT_OK /[OK

OMBINED_DATA | OK || TIMEQUT

COMBINED_PIN f OKIGEN_CRYPTOGRAM / CRYPTOGRAM

PIN_verified «=COMBINED_PIN / OBROBOT_OK /[TIMEOUT

COMBINED_DATA / OK || TIMEOUT |[ROBOT_OK/OK YOMBINED_PIN / OK

\\ \/
«=COMBINED_DATA / LONG_ERROR || LONG_ERR EN_CRYPTOGRAM / LONG_ERROR S \% LABS

waiting_for_confirmation

Analysing TLS

* (Almost) stateless TLS implementation in StateLearner
* Minimal state needed to support crypto operations
* Tested both clients and servers

* All regular TLS messages, as well as Heartbeat extension
* RSA and DH key exchange

* Client authentication

* Some special symbols that correspond with exceptions in the test harness

Refreshing TLS

Client Server
ClientHello -
ServerHello
Certificate
s ServerHelloDone
ClientKeyExchange
ChangeCipherSpec
Finished >
ChangeCipherSpec
= Finished

ApplicationData - —p ApplicationData

Analysing well-known TLS implementations

* Many different TLS implementations
* OpenSSL, BoringSSL, LibreSSL
* GnuTLS
 Java Secure Socket Extension
* mbed TLS (previously PolarSSL)
* NSS
* RSA BSAFE for C
* RSA BSAFE for Java
* miTLS
* Ngsb-TLS

* Every learned model different!

Analysing TLS

* Used demo application when available
* 6 to 16 states

e State machine learned in 6 minutes to 8 hours

* Depends on implementation specific time-outs (100ms to 1.5s)
* Under 1 hour if connections are properly closed
* Discovered flaws in different implementations

TLS models

P —

PO - WO

Iy

L

o
it ot ot g CormarsonCmet

T T

T
ot Barespecoet Tt Coeste

}, e e T s
5 DT s el
R

srpenrs
o

e
Nt g B

o
e]

GnuTLS

* Shadow path after sending HeartbeatRequest during handshake
* Buffer reset that contains all handshake messages to provide integrity
* Same problem present in the client

sed
ApplicationDataEmpty ApplicationDatsEmpty ApplicationDataEmpty
Empty
ClientkeyExchange ChangeCipherspec
HelloDpne Em Em ch
(1) B 2€ d 6)i
Ao
ApplicatlizonDtaytaEmpty ClientheloRSA
mp: ientHello
Empty
EmptyCertificate ClientkeyExchange
N Empty P Empty _)
'< Other \ N
Lo oo B B T T T
tbeatRaguast Empty ConnectionClosed |Hearheatag agt C - Haadbe
Empt) Y Empty E
»(11)
f— EmptyCertificate ClientkeyExchange \
Empty Empty
ApplicationDataEmpty |
HeartbeatR st
= Etrenpt;que Other ClientHelloRSA
Alert Fatal (Unexpected message) / Empty
ConnectionClosed Appli
Hej
y ClientkeyExchange E
lest ™~ Empty) I
10 »(9 - > 8
vy \C ChangeCipherSpec o
Empty
ApplicationDataEmpty |
d mctlassage)f Empty
ase Other
Alert Fatal (Unexpected message) /
Al ConnectionClosed
ConnectionClosed Other

2

J Alert Fatal (Unexpected message)j

ConnectionClosed

» 2

LABS

Other
Alert Fatal (Unexpected message) / ConnectionClosed)

Finished
Alert Fatal (Internal error) / ConnectionClosed)

— e

Java Secure Socket Extension

Possible to skip ChangeCipherSpec message

Server will accept plaintext data
Problem also present in client

At the same time discovered by the Prosecco group at INRIA, France

ClientHell oRSA

HeartbeatRequest

ServerHello f Certificate / SewerHeIIoDcne% Ern pty
g8

ClientKeyExchange
Empty

ClientHell oRSA

HeartbeatRequest HeartbeatRequest ServerHello / Certificate / ServerHelloD one
Empty Empty
CliertHel loR SA ClientKeyExchange ChangeCipherSpec
ServerHello f Certificate / ServerHelloDone Em Em
{a’\ > Pty Pty >
N
Other
Alert Fatal (Unexpected message) / /'/,
ConnectionClosed Einished
-~ ChangeCipherSpec / Finished

/ Finished ~

ChangeCipherSpec [Decryption failed ClientHelloRSA \
ClientkeyExchange ServerHello / Certificate / ServerHelloDone
Empty I
/ Other HeartbeatRequest | ApplicationDataEmpty I
Alert Fatal (Unexpected message) / HeartbeatRequestEmpty
ConnectionClosed
Empty _
7 4
-y / Other ChangeCipherSpec
Alert Fatal (Unexpected message) / Em pty ClientHelloR SA
ConnectionClosed / ServerHello / Certificate f ServerHelloDone

ChangeCipherSpec { Finished

<\

HeartbeatRequest
Empty

AN

Finished

ApplicationData
ApplicationData

Large scale analysis of OpenSSL

* Learned 145 versions of OpenSSL and LibreSSL
* Number of unique state machines
* Server-side: 15 for OpenSSL, 2 for LibreSSL
* Client-side: 9 for OpenSSL, 1 for LibreSSL
* Number of states
* Server-side: between 6 and 17
* Client-side: between 7 and 12
* Several CVEs could be detected in older state machines
* For example, EarlyCCS vulnerability

OpenSSL 0.9.7 (2002)

—_—
—_—
[—
— R —

— e

R -
e I — i = S
e L

LABS

OpenSSL 0.9.7 (2002)

ClientHelloRSAReset
~_ServerHello (TLSv1.0) / Centificate / ServerHelloDone

s R
ServerHello (TLSV1.0) / Certificate / ServerHelloDone

EmptyCertificate
Empty

Empty

ClientKeyExchange
Empty

pplicationDataEmpty
——Emply__

— =5 CharlgeCipherSpec
—— |Empy

[ChangeCipherSpec
Empty

ApplicationDataEmpty
Empty

Other (ChangeCipherSpec
[ConnectionClosed Empty

Finished | ApplicationData
lert Fatal (Unexpected message) / ConnectionClosed

ClientHelloRSAReset | EmptyCertificate | Finished | ApplicationData
Alert Fatal (Unexpected message) / ConnectionClosed

ClientHelloRSAReset | ClientKeyExchange | EmptyCertificate | Finished | ApplicationData
Alert Fatal (Unexpected message) / ConnectionClosed

/ChangeCipherSpec |

pplicationDataEmpty
—Empty.

Finished
ChangeCipherSpec / Finished

ChangeCipherSpec N e
Empty

0)/ Centificate / ServerHelloDone ConnectionClosed

ChangeCipherSpec | ApplicationData
ConnectionClosed

Finished
Alert Fatal (Unexpected message) / ConnectionClosed

‘ChangeCipherSpec | ApplicationData
ConnectionClosed

Other

1Cl
Alert Fatal (Unexpected message) / ConnectionClosed

| EmptyCertificate

ApplicationData
| ApplicationData / ConnectionClosed

ADataEmpty

: ClientKeyExchange
Empty Empty

ApplicationDataEmpty
Empty

ApplicationDataEmpty
ComnectionClosed Empty

ChangeCipherSpec | ApplicationData
ConnectionClosed

\

Finished

i h
Alert Fatal (Deerypt error) / ConnectionClosed

Other
Alert Fatal (Unexpected message) / ConnectionClosed

ClientHelloRSAReset

ChangeCipherSpec
Empty

ServerHello (TLSV1.0) / Certificate / ServerHelloDone

ClientHelloRSAReset
ServerHello (TLSv1.0) / Centificate / ServerHelloDone

Other
IAlert Fatal (Unexpected message) / ConnectionClosed

| EmptyCertifi

Finished | ApplictionData
Alert Fatal (Unexpected message) / ConnectionClosed

ClientKeyExchange
Empty

pplicationDataEmpty
Empty

te | Finished | Appli

Dat

All
Alert Fatal (Bad record MAC) / ConnectionClosed

ChangeCiph |

Alert Fatal (Unexpected message) / ConnectionClosed

ApplicationDataEmpty Other

Alert Fatal (Unexpected m

\ge) / ConnectionClosed

ConnectionClosed

ConnectionClosed

Reset | Cli I EmptyCertificate
Alert Fatal (Unexpected message) / ConnectionClosed

ChangeCipherSpec / Finished

LABS

OpenSSL 1.1.0b (2016)

ClientHello
ServerHello (TLSv1.0) / Certificate / ServerHelloDone

lientKeyExchange

Empty

ChangeCipherSpec
Empty

Other
IAlert Fatal (Unexpected message) / ConnectionClosed

Other
Alert Fatal (Unexpected message) / ConnectionClosed

Finished
ChangeCipherSpec / Finished

Other

rApplicationDataEmpty
Alert Fatal (Unexpected message) / ConnectionClosed e’

My

ApplicationData ClientHelloRSAReset

ApplicationData / ConnectionClosed

ConnectionClosed

Other

Alert Fatal (Handshake failure) / ConnectionClosed / Alert Fatal (Unexpected message) / ConnectionClosed

Other
|Alert Fatal (Unexpected message) / ConnectionClosed

Conclusion

* State machine inference is an effective technique to discover security issues and other bugs
* Everybody interprets specifications differently
* Including a state machine in specifications would help

* Can also be interesting to fingerprint implementations

* StateLearner is available from:
https://github.com/jderuiter/statelearner

Thanks for your attention!

	Slide16
	Slide2
	Slide21
	Slide22
	Slide19
	Slide17
	Slide20
	Slide23
	Slide24
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide29
	Slide25
	Slide 17
	Slide26
	Slide27
	Slide30
	Slide31
	Slide32
	Slide33
	Slide37
	Slide34
	Slide 26
	Slide 27
	Slide 28
	Slide35
	Slide36
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

