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ABSTRACT
TheUPIN (User-driven Path verification and control in Inter-domain
Networks) project aims to implement a way for users of a network
to control how their data is traversing it. In this paper we investi-
gate the possibilities and limitations of SCION for user-driven path
control. Exploring several aspects of the performance of a SCION
network allows us to define the most efficient path to assign to a
user, following specific requests. We extensively analyze multiple
paths, specifically focusing on latency, bandwidth and data loss,
in SCIONLab, an experimental testbed and implementation of a
SCION network. We gather data on these paths and store it in a
database, that we then query to select the best path to give to a user
to reach a destination, following their request on performance or
devices to exclude for geographical or sovereignty reasons. Results
indicate our software is a viable option to offer users many paths to
choose from, following a series of requests, and therefore perform
user-driven path control in a SCION network.
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1 INTRODUCTION
Citizens and governments depend on digital technologies that are
severely entangled in the main structure of society [5]. These tech-
nologies are built on the traditional Internet architecture and there-
fore inherit some of its limitations, such as the lack user control of
the network, and a consequent erosion of trust [6]. The Responsible
Internet paradigm wants overcome these problems by improving
the Internet transparency, accountability and controllability [6]. The
UPIN (User-driven Path verification and control in Inter-domain
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Networks) project, based on the notion of Responsible Internet,
develops a framework for users to control the behaviour of the net-
work [2] while integrating with the current Internet architecture.
However, providing users with a degree of control over network
traffic requires the network architecture itself to be designed differ-
ently from traditional approaches in use today.

SCION [9] is an Internet architecture designed to provide route
control, failure isolation, and explicit trust information for end-
to-end communications to end users. SCION addresses some of
the problems that the Responsible Internet wants to overcome and
provides strong resilience and security properties, as an intrinsic
consequence of good design principles. This is achieved by separat-
ing Autonomous Systems (ASes) into groups of independent routing
sub-planes, called trust domains, which then interconnect to form
complete routes. Trust domains provide natural isolation of routing
failures and manual misconfiguration. More importantly within
our research scope, they give endpoints strong control for both
inbound and outbound traffic, provide meaningful and enforceable
trust, and enable scalable routing updates.

Our research investigates the possibilities and limitations of
relying on a SCION network to provide users with control on how
their traffic is steered through the network. In order to achieve
this user-driver path control, we need to know some properties of
the underlying paths. For example, we analyze how the choice of a
specific path that follows the lowest latency to a desired destination,
as chosen by a user, affects the available bandwidth within a SCION
network. This allows us to examine the impact on performance that
shifting network control from operators to end users has on traffic.

This paper first provides an overview of an existing SCION
network and its capabilities, such as applications that run on it to
show how different paths are affected by latency, bandwidth and
packet loss. We then present our software that leverages on these
applications to build a database that contains extensive information
on paths available in the SCION network we tested. This database
is then queried to provide users with the best possible path they can
choose for reaching a specific destination, based on performance,
geographic placement of devices traversed, and operators that run
them.

The rest of the paper is structured as follows. First, the concepts
of SCION and the UPIN project are explained in section 2 to grasp
the range of this research. Our experimental setup and its capabili-
ties are reviewed in section 3. In section 4 the design considerations
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for the implemented software are clarified. The implementation
of the approaches is further detailed in section 5. Last, the path
selection process and the performance analysis are explained in
section 6 before making conclusions in section 7.

2 BACKGROUND
SCION [9] is an Internet architecture designed to provide route
control, failure isolation, and explicit trust information for end-to-
end communications to end users, thus giving endpoints strong
control for both inbound and outbound traffic. It is designed to pro-
vide high availability in the presence of adversaries, trust and path
transparency, and inter-domain multipath routing [8]. The SCION
architecture provides strong resilience and security properties as
an intrinsic consequence of good design principles, avoiding piece-
meal add-on protocols as security patches. Meanwhile, SCION only
assumes that a few top-tier Internet service providers (ISPs) in the
trust domain are trusted for providing reliable end-to-end commu-
nications, thus achieving a small Trusted Computing Base. We will
rely on a SCION network, specifically its testbed SCIONLab, to eval-
uate its capabilities and limitations when performing user-driven
path control.

2.1 UPIN
The UPIN project provides the concrete implementation for the
Responsible Internet, namely transparency, controllability and ac-
countability for the users of the network infrastructure [3][2].

UPIN introduces an Internet framework that allows users to
define a specific network behaviour. The framework utilizes existing
network paradigms, for example Software-Defined Networks, to
blend with other Internet infrastructures [3].

The UPIN framework consists of a Domain Explorer, Path Con-
troller, Path Tracer, Path Verifier, and Front-end [2]. The Domain
Explorer obtains metadata about properties of the network, includ-
ing security and environmental details. It stores detailed knowledge
on the nodes in the network. The Path Controller is in charge of
setting the forwarding rules based on the desires of the user. The
Controller is only able to influence the nodes in its own domain.
The Path Tracer gathers measurements on the traffic in the UPIN
domain. The goal is to store important details for the possible veri-
fication. The Path Verifier examines whether the desires of the user
are satisfied. However, if the path traverses a non-UPIN enabled
domain, the Path Verifier cannot be certain whether the intent is
satisfied over the full path. The Front-end provides a method of
communication between the user and the domain. Other applica-
tions of UPIN can be found in [7]. The work we present here relates
closely to the Path Controller component in the framework, and
investigates a new network environment where the UPIN concept
can be applied.

3 EXPERIMENTAL SETUP
Network testbeds have been essential in advancing networking
research and enabling scientific breakthroughs. These ad hoc envi-
ronments provide researchers with a controlled platform to conduct
experiments and evaluate novel network protocols, algorithms, and
technologies. They are crucial to understand the intricacies of net-
work behavior and exploring innovative solutions. However, it is

worth noting that the majority of existing testbeds is intended to
experiment with the current Internet. While this focus has undoubt-
edly yielded valuable insights and advancements, there is a growing
need to broaden the scope of testbeds to encompass emerging net-
work paradigms and technologies. For instance, next-generation
networks that support new networking approaches like path-aware
networking, multipath communication or novel security techniques,
require specifically designed testbeds.

The network under evaluation is SCION [9]. Specifically, the
idea is to explore its path-aware feature and its limitations. For
this purpose, SCIONLab has been developed to enlarge research
opportunities and experimentation with SCION.

3.1 Architecture: SCIONLab
SCIONLab is an architecture designed to provide a fully distributed
SCION network infrastructure, made up by different Autonomous
Systems organized in isolated domains. Users can define their own
ASes and connect them to the SCION network, for running experi-
ments. This global topology’s main goal is to provide a variety of
paths between different ASes to support multipath operations. It is
worth noting that a SCIONLab AS network typically is made up by a
single host, unless differently specified. Simultaneously, it operates
control plane services, border routers, and end host applications,
hence in this work we will interchangeably use “ASes” and “hosts”
to refer to network entities.

Fig. 1 depicts the global SCIONLab topology currently available1.
Every node in this topology represents an AS. Each AS is assigned a
globally uniqueAS number (ASN) and a public/private key pair. This
key pair is certified through the issuance of a public key certificate
(PKC). The SCIONLAB network infrastructure is based on 35 ASes
widely distributed across the world. SCIONLab organizes ASes
into groups of independent routing planes, called isolation domains
(ISDs), which interconnect to provide global connectivity.

There are three different types of ASes:
• Core ASes: in Fig. 1 they are light orange colored. A Core
AS is the root of trust inside the AS, which is the entity that
signs PKC of other ASes in the same ISD.

• Non-core ASes: these are standard components of the
SCIONLab infrastructure, having no specific role. They are
white colored in Fig. 1.

• Attachment points (AP): these are the most interesting com-
ponents of SCIONLab for us because they allow users to
attach their own ASes. In this way it is possible to extend
the global topology with the experimenters’ computational
resources. In Fig. 1, they are light green colored.

Finally, there is our ownAS that we had to define in order to interact
with the SCIONLab network; it is light blue colored in Fig. 1.

3.2 Initialization and Configuration
In order to start experimenting with SCIONLab, we have to define
one AS to attach to one endpoint. We created one AS through the
SCIONLab web interface2 and attached it to ETHZ-AP. We were
free to choose any of the access points in the topology. We chose
ETHZ-AP because of its centered position in the network that will
1Source: https://www.scionlab.org/topology
2Source: https://www.scionlab.org/
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Figure 1: SCIONLab Topology: in light orange there are Core ASes; Non-Core ASes are white colored; Attachment Points are
green; our AS is blue.

help us run specific experiments we will discuss in later sections.
Once this configuration phase was completed, SCIONLab web inter-
face provided a unique ASN for our AS, along with cryptographic
keys and public-key certificates. Subsequently, a Vagrant file for
our AS was generated to instruct the configuration of a Virtual
Machine (VM) that represents our AS. This file made the setup
process lightweight by automating the installation of SCIONLAB
services, relevant packages, and necessary configurations. Finally
we were ready to use a fully configured VM belonging to the global
SCIONLab topology.

3.3 Available Applications
The VM configuration process also installs a predefined set of
SCION applications. The SCION apps that we used in our experi-
ments are:

• scion address: this command returns the relevant SCION
address information for the local host, that is, our AS where
we launch commands from.

• scion showpaths: it lists available paths between the local
and the specified AS. By default, the list is set to display 10
paths only, it can be extended using the -m option. Moreover,
a really useful feature for this work, is the —extended option,
which provides additional information for each path (e.g.
MTU, Path Status, Latency info).

• scion ping: it tests connectivity to a remote SCION host
using SCMP echo packets[4]. When the —count option is en-
abled, the ping command sends a specific number of SCMP
echo packets and provides a report with corresponding statis-
tics. Furthermore, the real innovation is the —interactive
mode option, which displays all the available paths for the

specified destination allowing the user to select the desired
traffic route.

• scion traceroute: it traces the SCION path to a remote
AS using SCMP traceroute packets. It is particularly useful
to test how the latency is affected by each link. Even this
command makes interactive mode available.

• scion-bwtestclient: it is the only application presented
in this work that is not installed by default in the VM.
Bwtestclient is part of a bigger bandwidth testing applica-
tion named bwtester which allows a variety of bandwidth
tests on the SCION network. The application enables speci-
fication of the test duration (up to 10 seconds), the packet
size to be used (at least 4 bytes), the total number of packets
that will be sent, and the target bandwidth. For example,
5,100,?,150Mbps specifies that the packet size is 100 bytes,
sent over 5 seconds, resulting in a bandwidth of 150Mbps.
The question mark ? character can be used as wildcard for
any of these parameters, in this case the number of packets
sent. Its value is then computed according to the other pa-
rameters. The parameters for the test in the client-to-server
direction are specified with -cs, and the server-to-client
direction with -sc.

We will analyze further these scion commands and how we used
them in the next section.

4 SOFTWARE DESIGN
We now present our software to test SCION features of path aware-
ness and path selection. We will also test network performances
such as: latency, bandwidth and packet loss in order to provide
UPIN users with paths that fulfill requirements on these properties.
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Figure 2: Overview of the software architecture: the client
interacts with each server to gather information about paths
and then stores them in the database.

The software relies on a 3-tier architecture: there is a client-
server interaction model, along with a database where information
are retrieved and stored by the client. In particular, the previously
configured AS in the SCIONLab network acts as a client interacting
with a pool of servers. These servers are globally distributed around
the network and belong to different ISDs. The interaction model is
simple: a client which wants to test paths performances to reach
different destinations, performs the following actions by running
the test-suite:

(1) Paths Collection: the client gathers information about all the
possible paths to reach each destination and their known
characteristics.

(2) Paths Test Execution: the client has to test, for each of the
retrieved paths, network performances in terms of latency,
loss and bandwidth available.

(3) Stats Storage: the final step is the storage of the previous
statistics. One entry for each path is inserted in the database
and contributes to provide samples for path analysis and
evaluation.

Figure 2 provides an overview of the software architecture and
summarizes the steps described above.

4.1 Technical Requirements
4.1.1 Scalability. since the test-suite is based on testing network
performances, one of the most important requirements is scalability,
which means the system’s capability to adapt to a larger workload
or user base without compromising performance, responsiveness,
or reliability. The test-suite is designed to perform network mea-
surements and evaluations, so it inevitably generates a significant

amount of data. This data includes information about path perfor-
mances, network statistics, and other relevant metrics collected
from a multitude of test runs. The amount of data generated grows
both with the number of tests performed per destination, as well
as the number of destinations tested.

4.1.2 Fault Tolerance. it is the ability of the software to continue
functioning properly in the presence of faults or failures. In our
case, we can identify many types of failure:

• Data Loss: since the application is based on retrieving and
storing data in a database, and it relies on a dynamic network,
sometimes it may happen that some data gets lost due to a
malfunction in the network or in the software.

• Server Failure: as our source is not the only actor in this
architecture, it is not the single point of failure. Destinations
can be up or down and in some cases they could not answer
to our requests.

• Error Messages: it can also happen that a server is not down
but it provides a bad response. As in the previous case, we
should handle also this kind of responses.

Fault tolerance is a key point of this architecture since, continu-
ous measurements require continuous functioning.

4.1.3 Portability. it is a feature of a software application that de-
scribes how easily it can be transferred or adapted to different
computing environments or platforms without requiring signifi-
cant modifications. Our application is intended to be working on all
the SCION-based networks, with minimal modifications required.
Portability problems that may arise are:

• Different Commands Specification: the whole software archi-
tecture relies on the latest SCION built-in commands avail-
able in SCIONLab, hence, there might be updates or previous
versions of SCION that may not recognize the commands
used.

• Flexibility to changes in metrics: in the future, a user could
desire to add more metrics for the assessment of a path.
These metrics must be easy to integrate in the software.

Making a software portable is essential to speed its adoption
and improvements, but also to provide a plug-and-play system that
requires at most minor changes.

4.1.4 Security. it plays a crucial role in this architecture, given
the multitude of interactions that could potentially introduce vul-
nerabilities. Ensuring data integrity and authentication, managing
database access, and safeguarding against Denial-Of-Service attacks
are the baseline for a secure test-suite:

• Data Authentication and Integrity: as the software conducts
measurements across the network and store them in a data-
base, it is crucial to establish the legitimacy of data and verify
whether any tampering has occurred.

• Database Access Management: it is equally important to per-
form access control to store, read and modify data. Only au-
thorized users, following an authentication process, should
be granted these privileges.

• Denial-Of-Service Attacks: The threat of DoS attacks looms
large over systems that require continuous operation, as such
attacks have the potential to disrupt services for considerable
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Figure 3: Database Schema presenting, from left-to-right,
collection of paths’ statistics, collection of each path for each
server, and servers considered for the assessment.

periods. The development of a resilient architecture capable
of mitigating these attacks is indispensable.

We consider security into every phase of the development pro-
cess, starting from the design stage to avoid undesired consequences
and future complications.

4.2 Design Choices
4.2.1 Database Design. Since the software is based on retrieving
and store data efficiently, the first thing to design was the database
and take all the decisions needed to achieve good performance.
For this purpose, the choice fell on a non-relational database (DB)
because of two considerations:

• Massive dataset organization: a non-relational database can
easily store huge quantities of data and query them, since it
uses horizontal scaling and distributed architecture to handle
large datasets efficiently.

• Flexible database expansion: as networks are dynamically
changing, so is our data, and a non-relational DB can absorb
new data points, enrich the existing database with new levels
of granularity and extend previous data.

Among non-relational DBs, we selected MongoDB for its us-
ability and performances. For the sake of clarity, groups of data
logically recalling the same concept are named collections, they
hold the same role of tables in a relational database, though in
MongoDB, data structures belonging to the same collection can be
heterogeneous. An entry in a collection, is instead called document.
The designed database is composed of the following collections:

• availableServers: it stores information about servers with
which the test-suite can connect and perform tests. It is a
subset of 21 of all the 35 servers in the topology. Notably,
the norm in SCIONLab is for each AS to house only one
server; however, certain ASes contain multiple servers. We
later present them as different destinations.

• paths: this collection holds the information gathered for
each path to each destination in availableServers, it includes
the list of hops but also known characteristics.

• paths_stats: it collects all the statistics gained after the
test-suite runs but also further information related to the
path (e.g. ISDs traversed, number of hops, ...).

The database schema, along with documents’ structure, is shown
in Fig. 3.

“AvailableServers” collection has 2 fields: server’s source IP ad-
dress, along with an id. This identifier is a progressive integer and in
our case it can be a number between 1 and 21, since we only have 21
destinations fully testable in our topology.Each “paths” document,
instead, has its own identifier (_id), that is built by combining the
server id and a progressive number for the path (e.g. a path whose
id is 2_15 identifies the path 15 of the destination 2). Other fields
are used to describe some known properties about the path. Finally,
each document of “paths_stats” collection has its own identifier
built by combining the path identifier with a timestamp, in order to
identify the measurement in time over a specific path for a specific
destination. Other fields are performances related, such as: average
latency, average loss or average bandwidth in upstream and down-
stream, considering packets of only 64 bytes or packets of MTU
size.

4.2.2 Technical Requirements Design. we made several choices in
order to achieve scalability, fault tolerance, portability, and secu-
rity properties. The choice of a non-relational DB can strongly
improve scalability in querying and storing operations as well as
in distributing data automatically. Another choice was reducing
I/O operations’ overhead by preferring multiple insertions of path
statistics to single ones. There is a trade-off between fault tolerance
and scalability in terms of insertions. Preferring multiple insertions
means also that if a crash happens all the statistics are lost and
not saved. On the other hand saving one measurement at time
decreases performances dramatically and makes the system less
scalable. We decided to insert all the measurements after testing
once all the paths for one destination. In this way, a loss of data can
be negligible since one sample for each path would be lost with-
out unbalancing the number of samples for each path; this leads
to a growth in fault tolerance. Moreover, since nodes can be up
and down and sometimes they might be unreachable, the software
architecture was provided with error handling to reduce crashes
and keep the system working with a dynamic and fallible network.
Regarding portability, the software uses commands available in
SCIONLab, therefore its usage over a different SCION based net-
work may require a few adjustments to adapt them, though the
whole architecture would mostly be the same. Furthermore, the
choice of MongoDB enables effortless modification or addition of
metrics, resulting in a highly extensible and portable system.

In terms of security, many solutions have been designed, though
some of them are not implemented yet. The primary focus has been
given to:

• Database Access Management: the first thing to constraint
is database access, particularly during the statistics’ saving
operation, to avoid fake performances injection that may
alter analysis and provide misleading results. A possible way
of doing this is the usage of public key certificates to get
write access to the DB.

• Statistics Authentication and Integrity: similarly, also pro-
duced measurements should be authenticated with a PKC to
provide data integrity and authentication.We assumed that
data authentication was granted by the development of the
SCIONLab commands that our software relies on.
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• Denial-Of-Service: DoS attacks can be really hard to manage.
Fortunately, SCION’s inherent properties offer some relief
by minimizing the likelihood of DoS attacks [9].

5 IMPLEMENTATION
The test-suite is composed of three components: a shell script and
two python scripts. Precisely, the shell script that we used is written
in Bash (Bourne Again Shell), which is the default shell for most
Unix-like systems, including Linux. Bash scripts are versatile and
widely used for various automation tasks.

5.1 Bash Script
The bash script, test_suite.sh, can be seen as a container or
wrapper of the python scripts. It provides a command line interface
(CLI) to the user and execute other units to test each path and
store the results. From the CLI, the user specifies the execution
parameters and options necessary to define the behavior of the
application at run-time.

We can observe three main parameters:
• <iterations>: it is an integer that specifies the number of
times that tests must be executed for each path. Its value is
propagated to the run_tests.py script.

• —skip: optional argument used to bypass the collection of
paths to each destination and speed up the test execution. Its
usage is meaningful only if paths have already been collected
and have not changed.

• —some_only: another parameter useful to accelerate testing.
Its application constraints the test execution to only the
first destination. Therefore, all the paths of the first desti-
nation in the availableServers collection will be tested
<iterations> times.

This script, as well as the rest of our software suite, is available and
can be found in the following GitHub repository [1]. An example
of its usage could be the following:

. / t e s t _ s u i t e . sh 100 −− sk i p

The result will be the execution of the tests, for each path avail-
able, 100 times and skipping the path collection phase.

5.2 Paths Collection Script
One of the two sub-units of the bash script is the collect_paths.py
component. It serves as the first internal script with the purpose
of gathering information about all the paths available to reach
each destination. Its purpose is to populate the paths collection as
shown in Fig. 3. The user does not interface directly with it, since
the only part visible is the external wrapper. Even if its main role
is to discover paths, it also performs other operations like data
pre-processing, data insertion and deletion:

• Paths Collection: the main goal of this script is to discover
and retrieve paths information to reach the desired destina-
tions stored in the availableServers collection. Hence, the
initial step involves querying the database and collect the
set of destinations to test. For each of them the application
spawns a sub-process that runs the SCION command:

scion showpaths −−extended −m 40

This command provides a maximum of 40 paths for each
destination, ranked by hop count, along with all their details:
hops predicates (hops traversed in the path), MTU, path
status and minimum latency expected over the path. From
this output, we have decided to retain only paths with a
number of hops at most equal to the minimum required plus
one. This selection strategy is aimed at conserving time by
excluding paths that are overly lengthy and fail to meet our
latency criteria.

• Data Pre-processing: because the output of the showpaths
differs from what is expected as input for the testing com-
mands, a parsing operation is required before storing the
paths in the db.

• Data Storage: once data have been correctly pre-processed,
paths are inserted in the database and no longer available
paths for one destination are deleted.

5.3 Tests Execution Script
This last script, known as run_test.py3, represents the core of
the whole application. There are 3 nested for loops, used to run
tests over each path, for each destination, “iterations” number of
times. Three functions are invoked, each of them generates a sub-
process which tests one or more metrics of the path by running the
respective SCION command. Specifically, the three sub-processes
perform the following actions:

• Latency and Loss Measurement: this operation is performed
by the first sub-process which executes the following com-
mand:

scion ping {server_address} −c 30 −−sequence
'{hop_predicates}' −−interval 0.1s

The destination is reached using SCMP packets, measuring
the latency and the packet loss. We set the interval between
each packet to 0.1s and we send 30 packets. The destination
address and the sequence of hops determining the path to
test, are dynamically set at each iteration of the three nested
loops. The output values of the ping command are: the aver-
age latency measured by the 30 packets sent in milliseconds
and the packet loss percentage.

• Bandwidth Measurement with 64 bytes Packets: the second
sub-process executes the following command:

scion−bwtestclient −s {server_address} −cs
3,64,?,12Mbps −sequence '{hop_predicates}'

This is the bandwidth tester application available in SCIONLab.
Other than destination and hop predicates, we add the time
interval for which the bandwidth needs to be achieved (3s),
the packet size to send over the path (64 bytes), a wildcard
for the number of packets automatically computed by the
application, and the desired bandwidth to achieve (in this
case 12Mbps). We defined these parameters for the client-
server measurement only and, by default, they are used for
the server-client too, resulting in 2 average bandwidths to
be saved.

3Can be found under the Test folder in the root directory.
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Figure 4: Server Reachability from MY_AS#1. In blue is dis-
played the number of destinations reachable requiring mini-
mum a certain hop count.

• Bandwidth Measurement with MTU bytes Packets: this is
the last operation performed by the third sub-process before
the storage of the measurements. It executes the following
command:

scion−bwtestclient −s {server_address} −cs
3,MTU,?,12Mbps −sequence '{hop_predicates}'

The command is similar to the previous one but now sending
packets with the size of the maximum transmission unit, re-
sulting in two more average bandwidths, one per destination,
with MTU sized packets.

Another information we provide and store in the DB is the set
of ISDs traversed. It can be interesting to enlarge the context of
measurements with the ISDs and see if they influence somehow the
performance, and allow for one more interesting constraint to be set
by the end user at time of choosing one path. We have now gained
all the desired information about our path, including latency, loss,
bandwidth, and the set of traversed ISDs. The final step involves
storing this data. This operation takes place after each path has
been tested for a specific destination. As previously discussed in
the Technical Requirements Design subsection (4.2.2), this storage
approach enhances fault tolerance and reduces overhead in I/O
operations.

6 PATH SELECTION
We perform a preliminary analysis about the reachability on the
full server set. There are 21 reachable destinations. Fig. 4 depicts
the number of destinations that require a minimum number of hops
to be reached. It offers valuable information regarding the average
path length and the distribution of servers across the network.
Notably, the average path length is 5.66 hops and about 70% of paths
can be reached within 6 hops. This two data highlight the central
position of our AS within the server distribution. This insight can
easily be confirmed by looking again at the topology in Fig. 1.
In order to analyze further the performance of this network, we
present our experiments run on a subset of 5 destinations from the
21 available in SCIONLab.

These servers were selected from different geographical locations
and different ISDs. The idea is to assess how much the geographical

position and the belonging to a specific ISD can influence perfor-
mance. Hence, we picked servers placed in the following countries:
Germany, Ireland, North Virginia, Singapore and Korea.

In the course of this analysis, the test-suite gathered a substantial
dataset comprising approximately three thousand samples. This
wide volume of data provides a robust foundation for our follow-
ing analysis, offering meaningful insights into path performance
regarding latency, bandwidth and path loss.

6.1 Latency Assessment
Latency refers to the time delay between sending a data packet
from a source host to a destination one, and receiving a response.
It measures the round-trip time for data to travel between two
locations in a network. For instance, low latency is crucial for real-
time applications like video conferencing and online gaming.

We chose whisker plots to visually represent the distribution of
latency values and highlight key statistical measures in a concise
manner. A whisker plot is graphical representation useful to display
the distribution of a dataset along with its central tendency and
variability.

Firstly, our assessment focused on the evaluation of average
latency values for each path leading to the five destinations. Fig. 5
illustrates the whisker plots of latency values for each path of
destination 16-ffaa:0:1002,[172.31.43.7], which stands for
the Ireland AS. On the x-axis, there are the path identifiers of
routes having a number of hops less than or equal to the minimum
plus one; while, on the y-axis, there are the average latency values.
Hence, paths are categorized into two groups: 6 hops paths (in red)
and 7 hops paths (in purple).

The most interesting aspect in this graph is the clear separation
of latency values into three main layers, each with nearly the same
average values. From an accurate analysis of paths “10” and “15”
we have observed that the second-last hop of both paths is placed
in Ohio, USA, while paths “9” and “14” deviate through an AS in
Singapore. All the other nodes are located in Europe. This observa-
tion suggests that paths with geographically diverse hops have a
more significant impact on latency than the sheer number of hops.

The relation between hops location and latency is very useful
to determine which paths should be discarded in a path selection
based on low latency routes.

We performed a further analysis on latency by grouping, for each
destination, paths traversing the same set of isolated domains and
having the same hop count. Fig. 6 shows a graph describing this anal-
ysis. The x-axis provides the different sets of ISDs traversed to reach
the destination (AWS Ireland 16-ffaa:0:1002,[172.31.43.7]).
The interesting insight here is that only the hops number is not
enough to determine the latency variance or increment. By looking
at the second column of the graph on the left side, which considers
the same set of ISDs but with paths having one more hop, we can
see a much bigger gap in latency values. This may lead us to think
that latency is affected also by the number of hops. However, if we
take out long distance paths like those passing through Singapore
or Ohio (which are geographically far from the destination in Ire-
land) we can observe a smaller variance and comparable values, as
observable from the graph on the right side of Fig. 6.
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Figure 5: Average Latency Values measured for each path of
destination 16-ffaa:0:1002,[172.31.43.7] (AWS - Ireland).
Box plots are split into 6 hops paths length, in red, and 7 hops
paths length, in purple.

Figure 6: Average latency for each ISD set grouped by hop
count. On the left side, the plot includes all themeasurements.
On the right side, long distance paths have been excluded
from the second ISDs set.

Hence, the physical distance between hops confirms to be the
predominant component in the latency assessment. Moreover, it is
worth noting that by removing long distance paths we do not only
get a latency reduction but also a more compact box plot. Therefore,
it seems that ASes 16-ffaa:0:1007 and 16-ffaa:0:1004 intro-
duce a wide jitter other than high latency peeks. This assessment
helps us to exclude routes passing through these ASes for stream-
ing audio and video services, as well as, for example, VoIP calls,

Figure 7: Average bandwidth values for each path, requir-
ing a bandwidth of 12Mbps from and to a Germany Server
(address on the top). On the left side there are the upstream
measurements, while on the right side the downstream ones.

in which latency consistency is more important than low latency
values.

6.2 Bandwidth Assessment
The second parameter to evaluate for a conscious path selection
is the bandwidth. It represents the capacity or throughput of the
channel and is typically measured in bits per second (bps). We con-
ducted two distinct tests: one with a lower bandwidth requirement
of 12Mbps, and another requiring for 150Mbps. Each evaluation
involved two scenarios: utilizing packets of both MTU size and 64
bytes size, and examining interactions from both client to server and
server to client. The aim of this approach was to comprehensively
assess network behavior from various angles, including upstream
and downstream perspectives, as well as under different conditions
such as high bandwidth demands, small packet transmission, and
average usage at 12Mbps. Considering the first test at 12Mbps,
we achieved a consistent trend across all five destinations. Fig. 7
depict the average bandwidth values tested for the Magdeburg
AP in Germany (AS 19-ffaa:0:1303,[141.44.25.144]. The two
graphs illustrate the distribution of bandwidth for each path (mea-
sured inMbps), showcasing downstreammeasurements on the right
and upstream measurements on the left. Additionally, each path
is represented by two whiskers: the yellow whisker corresponds
to bandwidth values obtained using MTU-sized packets, while the
blue whisker represents values obtained with 64-byte packets.

As wewould expect, in upstream they achieve a lower bandwidth
compared to the downstream counterpart. This phenomenon is
in line with the internet’s inherent asymmetry, where user data
consumption typically exceeds data upload. Moreover, all the paths
get a lower bandwidth by sending 64-byte packets compared to
the MTU packets. This is an expected outcome, as using smaller
packets increases the total packet count, subsequently amplifying
the overhead of packet headers.

This trend reverses when we require a higher bandwidth of
150Mbps, highlighting the limitations of bandwidth in the SCIONLab
network. Fig. 8 shows the average bandwidth for the same destina-
tion but with a requirement of 150Mbps.

In Fig. 8 we observe a higher achieved bandwidth by sending
smaller packets instead of bigger ones. This looks counter-intuitive
because of the overhead of packet headers. Hence, the network
may not have sufficient capacity to handle the desired 150Mbps

792



Evaluation of SCION for User-driven Path Control: a Usability Study SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 8: Average bandwidth values for each path, requir-
ing a bandwidth of 150Mbps from and to a Germany Server
(address on the top). On the left side there are the upstream
measurements, downstream on the right.

bandwidth for MTU-sized packets. Even though MTU-sized pack-
ets are more efficient in terms of payload-to-overhead ratio, the
network may be congested or have limited capacity, causing packet
drops and resulting in a lower achieved bandwidth. Indeed, drop-
ping 64 bytes packets does not decrease the achieved bandwidth
as dropping MTU-sized packets. This is an insight that requires
further analysis even though it is suggested by all the destinations
involved.

6.3 Packet Loss Assessment
When a data packet is sent from a source to a destination, it tra-
verses various network devices and links. If any of these devices or
links are overloaded, faulty, or experiencing high traffic, packet loss
can occur. Monitoring and managing packet loss is essential for
maintaining network reliability and performance. Hence, we want
to assess this phenomenon to prevent a user by choosing routes
with a high packet loss ratio. Fig. 9 shows the average packet loss
percentage for each path available to reach AWS destination in
Northern Virginia, USA (AS 16-ffaa:0:1003,[172.31.19.144]).
Each path is represented with a different colored dot4. The dot size
stands for the number of measurements having the same packet
loss ratio. The majority of paths exhibits a loss ratio of 0%, with a
few instances occasionally reaching almost the 10% mark. However,
within this context, there are particular paths that notably regis-
ter a complete 100% loss rate, as evidenced by paths 2_16, 2_17,
2_18, 2_19, 2_22, and 2_23. These instances of complete loss merit
our attention, warranting exploration into potential factors at play,
such as network congestion. By looking at the sequence of hops
for each of these paths, a commonality emerges: the shared nodes
are only those concentrated in the first half of the path. Moreover,
since these measurements were carried out in succession (due to
the consecutive nature of the paths), our hypothesis is that one
or more of these common nodes experienced a period of congestion.

7 CONCLUSION
In order to achieve user-driver path control, we need to know
several properties of the underlying network and what paths we
can build in it. We investigated the possibilities and limitations of
SCIONLab for user-driven path control. We explored several aspects
4After an interval of 9 paths, colors are re-used.

Figure 9: Average packet loss percentage for each path of
AWS US N. Virginia AS. Each dot color represents a path and
its size the number of measurements having the same loss
ratio. Dots legend is on the upper right corner.

of its performance, specifically focusing on latency, bandwidth and
data loss, that left us with interesting insights, showcasing the role
that the test-suite can play in fostering informed and thoughtful
path selections. The software design is based on a database where
we store data gathered on many paths, that we then query to select
the best one to give to a user. This is a crucial step in our investiga-
tion on the consequences that shifting control from operators to
end users of a network has on its performance.

Specifically, we confirmed that latency in SCIONLab is affected
mostly by the physical distance among the nodes building the path,
rather than and that the number of hops or the ISDs traversed. A
more interesting aspect we measured was related to the bandwidth
limitations of the SCIONLab network, where the capacity decreases
when trying to target a higher bandwidth from a path. We intend to
investigate this behaviour further in the future. Packet loss appears
to be stable in most cases.

Finally, the path selection feature of SCION, when coupled with
a robust test-suite and data analysis techniques, blends into a pow-
erful tool that helps to fulfill the controllability requirement of a
UPIN user. We intend to proceed with our goal to satisfy this man-
date not only through the implementation of a test-suite, but also
by providing a user interface and a path recommendation feature,
that remains our main direction for future research.
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