
SIDN Labs
https://sidnlabs.nl

December 22, 2015

Peer-reviewed Publication

Title: ENTRADA: a High-Performance Network Traffic Data Stream-
ing Warehouse

Authors: Maarten Wullink, Giovane C. M. Moura, Moritz Müller,
and Cristian Hesselman

Venue: IEEE/IFIP Network Operations and Management Sympo-
sium 2016 (NOMS 2016), Istanbul, Turkey

Track: Experience Session

Conference dates: April 25th to 29th, 2016.

Citation:

• Wullink, M., Moura, G. C. M., Muller, M, and Hesselman, C.
”ENTRADA: a High-Performance Network Traffic Data Stream-
ing Warehouse”. In: IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2016) – Experience Session. Is-
tanbul, Turkey, May 2016 (to appear)

• Bibtex:

@inproceedings{noms-2016,

author = {{Maarten Wullink, Giovane C. M. Moura,

Muller, M, and Cristian Hesselman}},

booktitle={{Network Operations and Management

Symposium (NOMS), 2016 IEEE (to appear)}},

title={{ENTRADA: a High Performance Network

Traffic Data Streaming Warehouse}},

year={2016},

month={April},

}

1

https://sidnlabs.nl

ENTRADA: a High-Performance Network Traffic
Data Streaming Warehouse

Maarten Wullink, Giovane C. M. Moura, Moritz Müller, and Cristian Hesselman
SIDN Labs

Stichting Internet Domeinregistratie Nederland (SIDN)
Arnhem, The Netherlands

Email: {firstname.lastname}@sidn.nl

Abstract—We present ENTRADA, a high-performance data
streaming warehouse that enables researchers and operators to
analyze vast amounts of network traffic and measurement data
within interactive response times (seconds to few minutes), even in
a small computer cluster. ENTRADA delivers such performance
by employing a optimized file format and a high-performance
query engine, both open-source. ENTRADA has been operational
for more than 1.5 years, having ingested more than 100 TB of
pcap files from two .nl DNS authoritative servers. As we discuss,
we use this data in projects that aim at further increasing the
security and stability of the .nl zone. We present in this paper
our design choices, experiences, and a performance evaluation of
ENTRADA. Finally, we open-source ENTRADA, which can be
used “out-of-the-box” by researchers, operators, and registries
to deploy their own networking analysis clusters for DNS traffic,
and can be easily extended to handle any other structured data.

I. INTRODUCTION

To cope with the increasing growth in the volume of Internet
traffic, researchers have resorted to computer cluster-based so-
lutions as a way to achieve better performance, scalability, and
dependability when processing increasingly large datasets [1],
[2], [3], [4], [5]. Such cluster are often based on Apache
Hadoop [6] or other non-relational databases (NoSQL) [7].

Differently from traditional “only once” analysis on snap-
shot datasets, in this paper we focus on high-performance
cluster solutions that (i) are designed to ingest and process
continuous streams of network data and (ii) combine long term
data storage, delivering interactive response times (seconds or
few minutes) on both historical (≥ years) and recent data.
Such solutions are referred in the literature as data streaming
warehouses (DSW) [1], [8], [2].

Building such DSWs is far from being an trivial task,
and poor design and data management/engineering choices
may lead to significantly poorer performance with the same
hardware set. In this paper, we cover our experience in building
ENTRADA (ENhanced Top-level domain Resilience through
Advanced Data Analysis), a Hadoop-based DSW for network
traffic analysis. ENTRADA was built to enable fast data
analysis on the network traffic to the .nl (The Netherlands)
country -code top-level domain (ccTLD) authoritative DNS
servers, with the main goal of supporting applications that
improve both security and stability of the .nl zone. ENTRADA

is built entire with open-source tools, and we make it openly
available at [9]. Moreover, ENTRADA can be extended to
any file format/protocol (e.g., log files, passive and active
measurement data), or any other structure data.

ENTRADA is a enabler of high-performance analysis of
networking traffic data: it can be used to quickly determine
statistics over large data sets, and enable quick perform
hypothesis tests. As we show, it is capable to analyze the
equivalent of 52TB of pcap data in less than 3.5 minutes, even
on a small 6-nodes cluster. This level of performance would
be hard to achieve using traditional networking data analysis
tools. ENTRADA has been uninterruptedly operational for 1.5
years (December 2015), with more than 88 billion records
(DNS query/response pairs).

In a nutshell, to achieve high-performance in networking
data analysis in DSWs (where the same data is queried
and analyzed multiple times), we demonstrate the benefits
of (i) converting standard pcap files to query-optimized
format – Apache Parquet [10] – and using (ii) Impala [11]
as query engine, instead of standard MapReduce jobs or other
engines. For more complex queries or analysis not supported
by Impala, other engines, such as Apache Spark [12], can be
easily used on the same data in Parquet format.

The remainder of this paper is divided as follows: in Sec-
tion II we present background information on the measurement
data we store in ENTRADA. Then, in Section III, we lay out
our requirements and present in Section IV an assessment of
the design choices with regards to these requirements. Data
engineering and management plays a key role in performance,
which we cover in Section V. We evaluate the performance
of ENTRADA using datasets from one of the .nl authoritative
servers in Section VI. Finally, related work and conclusions
are covered in Sections VII and VIII, respectively.

II. BACKGROUND

In order to clarify why we need such DSW, we first have
to explain our business. Stichting Internet Domeinregistratie
Nederland (SIDN) [13] is the registry for .nl, which is the
country code top-level domain (ccTLD) of the Netherlands.
As part of this registry role, SIDN manages the authoritative
DNS servers for .nl as well as the database of all 5.5 million
currently registered .nl domain names. At SIDN Labs, the
research arm of SIDN, we built ENTRADA as an enabling978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

Users Recursive
DNSes

(I)
Internet

(II) .nl Auth
Servers

(III)

pcap to
parquet

converter

STAGING

(IV) pcap files

Hadoop Cluster

Impala Spark

HDFS

Daily
Bufferparquet files (V)

Data
ware-
house

(VI)

(VII) (VII)

Analyst
and
Appli-
cations

(VIII)

Fig. 1. ENTRADA data sequence flow

platform for applications that aim at further increasing the
security and stability of .nl zone.

Authoritative DNS data and domain resolution: currently,
we store in ENTRADA passive measurement data collected
at two of the .nl authoritative servers, i.e., servers that are
responsible for the .nl zone.

To understand this data, we have to understand the domain
resolution process, which we simplify here in an example –
we refer the reader to [14] for a more detailed explanation.
Consider the case in which a user tries to connect to a website
(e.g.: www.example.nl), the user’s computer needs to resolve
the domain name into ultimately an IP address. The user’s
computer runs small stub DNS resolver, which, connects to
a recursive DNS servers (I in Figure 1), usually the ISPs’
DNS recursive server. This server, in turn, will start a recursive
process [14] on behalf of the user, asking the root servers (the
“.” zone, II in Fig. 1, not shown) for the addresses of the .nl
TLD authoritative servers.

The recursive DNS server will then ask one of the .nl servers
for example.nl (III in the same figure). The .nl name server
will refer the recursive server to the name server of example.nl,
which knows the IP address of example.nland returns it to
the recursive server. The recursive server will ultimately send
the IP address to the user, whose browser will then be able to
reach example.nl.

Partial view: to improve performance, recursive servers
employ local caches that store queried domains responses [15].
As a consequence, cache hits in the recursive DNS server
avoid it from issuing queries to the .nl authoritative servers.
Therefore, the requests that reach a DNS authoritative server
are only a subset of all the queries for the zone the name
server is authoritative. This subset of queries is the data
we store in ENTRADA (as well as their respective IP and
UDP/TCP headers, and other metadadata – see Sec. V), from
two authoritative servers. We will add data from other servers
in the near future.

III. ENTRADA REQUIREMENTS

We defined the following requirements for ENTRADA:

Performance: the system should be able to support inter-
active data exploration with short response times (seconds or
few minutes), even over large time windows (≥ years).

Scalability: we started by storing all DNS queries from one
.nl server (∼ 85GB/day in pcap format, per authoritative
server). ENTRADA must scale, i.e., support both storage while
not compromising the performance, as data from more .nl
servers is stored.

Usability: users should be able to access and query data
without the need to use complex APIs or writing low-level
code, enabling fast data exploration and prototyping. We
determine that SQL-like query support is a must, enabling
data analysts and engineers to easily explore the data [16].

Extensibility: the data format should be compatible with
various data analytics engines. Therefore, we should avoid any
form of vendor and/or software lock-in.

Security: data flows from and to the ENTRADA should
always be encrypted, by default, with strict access-control
mechanisms in place.

Dependability: Failure of any cluster component must not
result in the loss of data or the cluster becoming unavailable.
Performance degradation caused by component outage is ac-
ceptable.

Privacy: We store passive DNS data from two .nl author-
itative name servers. Under Dutch law, parts of this data
may qualify as personal identifiable information, even though
most of them come from recursive servers at ISPs and not
end users [14]. We do not cover this in this paper, but we
have developed, together with our legal department, a publicly
available data privacy framework [17] that conforms to both
EU and Dutch laws. This framework has been implemented,
including a privacy board that oversees SIDN Labs research.

IV. CLUSTER DESIGN CHOICES

In this section, we discuss and motivate our design choices.

A. Data Query Engines

Whenever building a DSW, an engineer is faced with
multiple choices for query engines, i.e., the software that
processes the data. The performance of such engines may
vary significantly according to use cases. For example, in one
study [11], Impala outperformed by 6.7 times other Hadoop-
based SQL-engines, such as SparkSQL, Presto, and Hive.

For ENTRADA, we have compared qualitatively the fol-
lowing SQL and NoSQL query engines against our re-
quirements available when we started this project: Apache
HBase1, Elasticsearch2, MongoDB3, PostgreSQL4, Hadoop
HDFS+Map/Reduce [18] and Impala combined with Apache
Parquet/HDFS, the more popular choices when we started this
project in 2013. Since then other engines, such as Spark [12],
have been developed and/or improved (ENTRADA also sup-
ports Spark).

1https://hbase.apache.org/
2https://www.elastic.co/
3https://www.mongodb.org/
4http://www.postgresql.org/

https://hbase.apache.org/
https://www.elastic.co/
https://www.mongodb.org/
http://www.postgresql.org/

Engine Usab. Exten. Perf. Scal. Dep.
HBase(HDFS) 0 0 1 1 0
Elasticsearch 0 0 1 1 1
MongoDB 0 0 1 1 1

Hadoop+MapReduce(HDFS) 1 0 0 1 1
PostgreSQL 1 0 0 1 0

Impala+Parquet(HDFS) 1 1 1 1 1

TABLE I
COMPARISON OF DATA QUERY ENGINES (1 = MATCHES OUR

REQUIREMENTS, 0 DOES NOT MATCH)

Table I shows our ranks for each of these engines with
regards to our requirements. We omit security and privacy
from the table, since privacy was handled separately, and all
of them provided the security features we needed.

We ruled out HBase, MongoDB and Elasticsearch from the
very beginning since they do not provide SQL-compatible
interface, our usability requirement. HBase since then has
included a SQL interface.

Nevertheless, we tested all the engines/frameworks on a
dataset of 1 billion records (1 billion DNS packets), and only
Hadoop/MapReduce and PostgreSQL did not perform as we
expected for our sample queries. MapReduce uses a slow batch
oriented model, which incurs additional latency. For example,
a simple count of DNS packets from a certain country would
take roughly 1 minute to set up the batch process, plus
the complexity required of writing MapReduce code, which
impairs interactive analysis. PostgreSQL performance, on the
other hand, decreased significantly after adding hundreds of
millions of rows. We did not try to optimize it at this point, and
instead we eliminated these two engines from our test, moving
to our last option: Impala in combination with Parquet (HDFS)
(we started with Impala around its first releases, even before
an performance comparison was made available in [11]).

Impala is massively-parallel SQL query engine that utilizes
the underlying Hadoop infrastructure, including HDFS. Impala
implements its own services and daemons on each data node
in the cluster to improve performance, and therefore does not
run any MapReduce jobs on the cluster. It supports Apache
Parquet file format, and both in combination enable interactive
queries over very large datasets.

By performing a series of data management optimizations,
Impala outperforms significantly other query engines [11],
such as SparkSQL5 (SQL module for Spark) and Presto.
We therefore chose the combination of Impala and Apache
Parquet for ENTRADA since it matched our requirements
(Section III): it performs well [11], provides a SQL-engine that
allow fast exploratory analysis with little overhead in compar-
ison to MapReduce, and the data format it uses (Parquet) can
also be used by other engines, such as Spark.

We developed the workflow showed in Figure 1: we convert
the incoming pcap files to Parquet format (V in Fig. 1),
store them on the HDFS (VI) and query using Impala (or
any Parquet-compatible engines, such as Spark, VII in the

5https://spark.apache.org/sql/

same figure). We cover the data conversion and management
in Section V.

B. Cluster Architecture

We use Cloudera Hadoop Distribution for ENTRADA,
since it supports Impala and has user-friendly management
interfaces. As any other Hadoop Linux distribution, it provides
the basic Hadoop functionalities, which includes HDFS [19],
the default distributed file system that manages the data and
distributes it across the data nodes. We employ triple data
redundancy – data replicated on three different data nodes –
to improve data dependability and performance.

We dimensioned ENTRADA to be able to store 2 years of
data from one .nl authoritative server, and more nodes can be
added on demand. ENTRADA consists initially of 6 nodes:
one Hadoop name node, whose function is not to store data
but to keep “the directory tree of all files in the file system,
and tracks where across the cluster the file data is kept6”. It is
a central part of the HDFS that is used to located data stored
in the cluster. The name node has a Intel Xeon 1.9 GHz 6-
core processor, with 96GB of RAM and two 1Gbps line, plus
3 TB of storage in SAS. The data node is also used as the
management and staging node (Fig. 1).

We have 4 data nodes, i.e., nodes in which the data is actu-
ally stored across the HDFS. They have the same specification
as the name node, except for having 6TB of disk. Finally,
we have a metadata node, which is responsible to store the
configuration parameters of the cluster (PostgreSQL database),
as well as Impala’s metadata storage. This server has a 6-
core 2GHz Xeon processor, with 32GB of RAM, 1Gbps line,
and 4TB storage. Finally, we have just acquired two new data
nodes, but they we were not active at the writing of this paper.

V. DATA MANAGEMENT

In this section we show how ENTRADA ingests the pcap
files from the DNS authoritative servers and convert this data
to a a high-performance format.

A. Data Format

Networking traffic in pcap format is not optimized for
interactive aggregation queries For example, counting unique
IPs addresses in a 100TB pcap file would require to read and
parse all 100TB data – a very CPU/IO intensive task.

To deal with this problem over other types of datasets,
Google developed Dremel [16], a query system for analysis
of read-only nested data that delivers aggregation queries
(e.g., averages) of over trillion-row tables in seconds. Dremel
combines multi-level execution trees and columnar data stor-
age [20]. Columnar storage [20] is an efficient format for data
storage, which differs from traditional row-based storage (such
as pcap) in the way the data elements are ordered. In row-
based storage, the individual columns for a row are written
sequentially to file. With columnar storage, in turn, all values
for a column are written sequentially to file. This has several
advantages: it reduces data latency for queries that only need

6https://wiki.apache.org/hadoop/NameNode

https://spark.apache.org/sql/
https://wiki.apache.org/hadoop/NameNode

specific columns – it only reads data related to the requested
columns. In the aforementioned example, instead of reading
every single packet/field, it would only read the data related
to source IP addresses.

Interactive response times are a must for any DSW. There-
fore, we convert all incoming pcap files to more query-
efficient formats. In our case, we convert it to Apache Par-
quet [11] format, which is based on Dremel. Besides enabling
fast aggregation query response times, Parquet employs en-
coding algorithms such as run length, dictionary and delta
encoding on entire columns, since they have same-type val-
ues, reducing storage requirements. By default, Impala uses
Snappy7, a compression algorithm that is a good compromise
between compression and decompression speed. From the
∼85 GB of daily pcap data per authoritative server, Parquet
and Snappy compress it to ∼6GB (after also filtering some
fields, as we discuss in the next session).

B. Data Pre-processing and Partitioning

As we show in Fig. 1 (step IV), we first obtain pcap files
that contain traffic to and from the .nl authoritative servers.
This data, in turn, must be converted the Parquet format, so
Impala and other data query engines can easily and efficiently
read it.

To achieve this, we have developed a Parquet converter that
is based on RIPE’s NCC Hadoop pcap reader [21]. This
converter reads incoming pcap files and decodes the IP, TCP,
UDP, DNS and ICMP packets. For DNS packets, we perform
three steps: (i) matching, (ii) filtering, and (iii) enrichment,
which we describe next.

First of all, we (i) match every DNS request to its respective
response8, and store both of them as a single record, avoiding
this to be done in the analyst phase. After that, we store the
IP, UDP or TCP, and DNS header information, along with the
DNS tuple. We (ii) filter the data, by removing the answer part
of the response packet, i.e., storing the header but removing the
answer sections of the DNS format. We remove this since we
already store this information in another database that contains
authoritative data for the .nl zone file (a list of all fields can
be found at [22]).

Then, for data enrichment (iii), we add the country code of
the resolver IP address to the data (using Maxmind’s GeoIP
database), as well as its respective autonomous system number
(ASN).

We partition the data by year, month, day and authoritative
server. This allows query engines to perform partition pruning,
i.e., avoiding look ups in partitions that do not match the
requested queries, improving performance on query response
times. Finally, we write it to the Parquet format (see next
subsection) using the KiteSDK library9, in a tree structure
according to the data partitions we previously defined.

7https://github.com/google/snappy
8There is an exception: rate-limited requests are not responded, leaving the

response fields empty – which we also store.
9http://kitesdk.org/docs/current/

C. Data Storage on HDFS

The generated Parquet files are uploaded from the staging
server to a “daily buffer” directory on the HDFS (V in Fig. 1).
To reduce the number of Parquet files on the HDFS, we store
all files from the “current” day in this directory, and later
merge into larger files and persist into the data warehouse
directory. We do this to improve lookup times, since it is
preferable to have fewer larger files than many small ones.

The staging server receives pcap files from the .nl TLD
servers every five minutes. Currently, it takes less than a
minute to convert a pcap file to Parquet format and upload it
to the daily buffer. After that, the data is automatically made
available to Impala (or any other tool Parquet-compatible).

D. Data Analytics

A number of interfaces can be used to analyze the stored
data. For interactive ad-hoc querying the user-friendly Hue10

web-based interface is good for initial data analysis, since it
allow SQL queries to be directly executed from the browser.
Integration with other tooling or applications can easily be
achieved with the use of Impala-shell (command line query
interface) or with the Impyla Python library11, as well as other
engines, such as Spark [12].

E. Data Conversion Monitoring

To guarantee the data conversion process occurs without
issues, we collect various metrics during the conversion (e.g.:
time series of number of imported packets, DNS opcodes,
etc.), and export them. Then, we persist this data in Graphite12,
a highly scalable real-time graphing system. We then use
Grafana13 to create real-time dashboards with the metric data
stored in Graphite. These dashboards show the current state
and historical state of the conversion module. They are also
used to give an overview of the data that ENTRADA has
processed.

VI. PERFORMANCE EVALUATION

A. Setup and Datasets

In the last 1.5 years, ENTRADA has accumulated 88
billion records – each record corresponding to a DNS re-
quest/response. This is equivalent to∼100 TB in pcap format.
After the data pre-processing described in Section V-B, the
volume is reduced to ∼3.8 TB. We store the data on HDFS
with a replication factor of 3, the total storage requirements
are therefore 11.4 TB (December 2015).

For the performance evaluation, we use parts of this
datasaset. We divided it into three time windows (day, month,
and year), from one name server only, in order to assess the
scalability of ENTRADA. In Parquet format, a day of DNS
traffic averages 6 GB of data, a month to 240 GB, and a year
2.2 TB.

10http://gethue.com/category/impala/
11https://github.com/cloudera/impyla
12http://graphite.wikidot.com/
13http://grafana.org/

https://github.com/google/snappy
http://kitesdk.org/docs/current/
http://gethue.com/category/impala/
https://github.com/cloudera/impyla
http://graphite.wikidot.com/
http://grafana.org/

 0

 5

 10

 15

 20

 25

Day Month Year

R
es

po
ns

e
T

im
e

(m
in

ut
es

) Single Thread
10 Threads

Fig. 2. Parallel query – response time

We ran our queries from our Hadoop name node (Sec-
tion IV-B), using the impala-shell client. The four data
nodes are located in two different locations (< 100km apart,
two per data center), connected via 2Gbps lines. The manage-
ment node is located on a third datacenter, also with the same
line speed.

The name node connects to the data nodes and orchestrates
the query execution, retrieving and aggregating the results.
We also disabled caching at Impala (cold cache) for this
evaluation.

B. Parallelizing Queries

Before measuring ENTRADA’s performance, we first asses
the impact of the both dataset size and number of parallel
threads in the execution of an aggregation query. Since each
Impala aggregation query is mapped to a single-threaded
process on the data nodes, by sending only one query, we
underutilize the 6 available cores on each data done. Therefore,
to avoid this, we ran 10 parallel threads.

To accomplish this, we first have to split a query according
to the partitions we have chosen. For example, a query that
encompasses a time window of one year can be broken down
in 365 queries that cover 1 day only, and later aggregated.

Figure 2 shows the response time for this cases for our test
query: select concat_ws(’-’,day,month,year),

count(1) from dns.queries where ipv=4 and year

= ’X’ and month = ’Y’ and day=’Z’ group by

concat_ws(’-’,day,month,year).
This query counts the number of IPv4 request/responses per

day. We can observe that the response time grows linearly with
the time window, and 10 threads in parallel ran 3.47 and 3.63
times faster than only one, respectively. Overall, for the one
year 10-thread query, we were able to count the number of
IPv4 queries for 2.2 TB of data (equivalent to 52TB in pcap)
in less than 7 minutes, and less than a minute for a month
period. This would have been unfeasible had the files been in
pcap format using the same hardware.

C. Evaluation Queries and Results

We measure ENTRADA’s response time to queries of two
types: aggregation and scan. Aggregation type queries perform
an operation of a number of rows, and return a single number.
For example, the average packet size. A scan type returns a
large number of records, e.g.: selecting all unique IP addresses
from a single day.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Day Month Year

R
es

po
ns

e
tim

e
(m

in
ut

es
) Aggregation Query

Scan Query

Fig. 3. Response times for aggregation and scan queries

To achieve better performance, we employ 10 parallel
threads, as discussed in the previous section. We used the
following queries:

• Aggregation query: SELECT avg(reqSize),

avg(respSize), sum(reqSize), sum(respSize)

FROM dns.queries WHERE ipv = 6 and year =

’X’ and month = ’Y’ and day=’Z’

• Scan query: SELECT ipv from dns.queries

WHERE ipv = 6 AND year = ’X’ and month =

’Y’ and day=’Z’

The aggregation query calculates both the average and the
sum of DNS requests and responses using IPv6. In the scan
query, on the other hand, we retrieve all IP version column
values from only IPv6 packets. Notice that we explicitly spec-
ify year, day, and month, to allow Impala to perform partition
pruning (Section V-B), avoiding unnecessary IO operations.

We ran the aggregation query above specified for one year
period – or 2.2 TB of parquet data (52 TB of pcap). It took
less than 3.5 minutes to retrieve the results, and 16.1 seconds
for a month of data (240GB in Parquet), as can be seen in
Figure 3. Combined with the Parquet format and partition
pruning, Impala is able to query only the necessary files and
delivers interactive-speed results, even in such a small cluster.
The response time of such queries can be further reduced by
simply adding more nodes to the cluster.

Even though ENTRADA delivers better performance with
aggregation queries – DSWs and related solutions are more
frequently queried using aggregation type queries [16] – some
scenarios demand scan queries, in which large volumes of data
are pulled from ENTRADA. Figure 3 shows also the results
for the scan query. As can be seen, it did not enable interactive
analysis. Regardless, even for the scan data case, we can see
that ENTRADA performs very well when retrieving all this
data – and can be easily improved by adding more nodes.

D. ENTRADA Applications

We use ENTRADA to enable a series of applications. Due
to space constrains, we briefly cover three of them.

The Resolver Reputation (ResRep)14 is used to single out IP
addresses of DNS resolvers that query .nl authoritative servers
with a suspicious behavior (e.g.: high percentage of invalid
MX queries), which may be indicator of botnet activity. IP

14https://www.sidnlabs.nl/downloads/presentations/A Resolver
Reputation System.pdf

https://www.sidnlabs.nl/downloads/presentations/A_Resolver_Reputation_System.pdf
https://www.sidnlabs.nl/downloads/presentations/A_Resolver_Reputation_System.pdf

addresses geo-located to the Netherlands are then submitted
as a feed to AbuseHUB15, a Dutch joint initiative formed by
major ISPs to share incident data in order to mitigate botnets,
so their respective ISPs can take action based on our data.

We also use ENTRADA to detect maliciously registered
domains, in a project called new Domains Early-Warning
System (nDEWS). By analyzing their initial query pattern16,
we single out suspicious domains that may be involved in
phishing, spam, fraud, and malware distribution, among others.
We then notify their respective registrars (currently in a pilot
phase), so they can act on it.

Finally, as part of our open data initiative, we use EN-
TRADA to make DNS datasets openly available on our
statistics website [23], in addition to a series of analysis on
.nl zone and traffic.

VII. RELATED WORK

To the best of our knowledge, this is the first work that
uses off-the-shelf open-source software to implement a data
streaming warehouse. Other solutions, such as DateDepot [1],
provide similar features, however only using customized close
source software. DBStream [2], which is also an open-source
DSW, uses PostgreSQL as a query engine. ENTRADA, on
the other hand, uses off-the shelf Impala query engine and
Parquet file format based on Google’s Dremel [16] to achieve
high performance. It is not clear, however, if DBStream is
capable to deliver the same performance as ENTRADA: with
10 nodes in a cluster analyzing several aggregating queries (J1)
over a 640GB raw dataset, it took the DBStream more than 50
minutes. It took ENTRADA less than 3.5 minutes to analyze
almost 4 times more compressed data (2.2 TB) datasets in a 6-
node cluster. However, a precise benchmark is still necessary
to assess the performance.

Other works, such as [3], [4], [5], focus of “off-line”
analysis in Hadoop clusters, i.e., data analysis on snapshot data
that does not need long term storage. ENTRADA, however, is
designed to be append-only – i.e., new data is continuous ap-
pended but not updated, and delivers near real-time responses.

VIII. CONCLUSIONS

We presented ENTRADA, a data streaming warehouse
designed to deliver interactive response times on large datasets,
via SQL-like queries. This is achieved by employing both
an optimized file format and a query engine, which allows
researchers and operators to easily and quickly investigate their
hypothesis. It can be extended to store not only networking-
related data, but any sort of structured data.

ENTRADA has been operational for more than 1.5
years (Dec. 2015), storing DNS traffic from two of the .nl
authoritative servers. We use ENTRADA as a enabler in
projects that aim at improving both security and stability of
the .nl zone.

The lessons here presented can be used as guidelines for
other research teams and DNS operators to deploy their own

15https://www.abuseinformationexchange.nl/english
16http://iepg.org/2015-11-01-ietf94/iepg-moura.pdf

data analysis clusters – which can also be done by using cloud
providers. To help in this process, we open-source the modules
we have developed for ENTRADA and make it available at [9].

Acknowledgments: The authors would like to thank Marco
Davids and Jelte Jansen for their valuable comments.

REFERENCES

[1] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk, “Stream Ware-
housing with DataDepot,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’09.
New York, NY, USA: ACM, 2009, pp. 847–854.

[2] A. Bar, A. Finamore, P. Casas, L. Golab, and M. Mellia, “Large-scale
network traffic monitoring with DBStream, a system for rolling big data
analysis,” in Big Data (Big Data), 2014 IEEE International Conference
on, Oct 2014, pp. 165–170.

[3] T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck, B. Vermeulen,
and P. Demeester, “Tengu: An experimentation platform for big data
applications,” in Distributed Computing Systems Workshops (ICDCSW),
2015 IEEE 35th International Conference on, June 2015, pp. 42–47.

[4] J. Liu, F. Liu, and N. Ansari, “Monitoring and analyzing big traffic data
of a large-scale cellular network with Hadoop,” Network, IEEE, vol. 28,
no. 4, pp. 32–39, July 2014.

[5] Y. Lee and Y. Lee, “Toward Scalable Internet Traffic Measurement and
Analysis with Hadoop,” SIGCOMM Comput. Commun. Rev., vol. 43,
no. 1, pp. 5–13, Jan. 2012.

[6] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
[7] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?”

Computer, vol. 43, no. 2, pp. 12–14, Feb 2010.
[8] E. Liarou, S. Idreos, S. Manegold, and M. Kersten, “Monetdb/datacell:

online analytics in a streaming column-store,” Proceedings of the VLDB
Endowment, vol. 5, no. 12, pp. 1910–1913, 2012.

[9] SIDN Labs, “ENTRADA homepage,” http://entrada.sidnlabs.nl/,
2015.

[10] Apache, “Apache Parquet,” https://parquet.apache.org/, 2015.
[11] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,

J. Erickson, M. Grund, D. Hecht, M. Jacobs et al., “Impala: A modern,
open-source SQL engine for Hadoop,” in Proceedings of the Conference
on Innovative Data Systems Research (CIDR’15), 2015.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010.

[13] SIDN, “SIDN: the company behind the .nl,” http://sidn.nl/en, 2015.
[14] P. Mockapetris, RFC 1034 Domain Names - Concepts and Facilities,

Internet Engineering Task Force, 1987.
[15] M. Andrews, “Negative Caching of DNS Queries (DNS NCACHE),”

RFC 2308, Internet Engineering Task Force, Mar. 1998.
[16] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis, “Dremel: Interactive Analysis of Web-scale Datasets,”
Proc. VLDB Endow., vol. 3, no. 1-2, pp. 330–339, Sep. 2010.

[17] C. Hesselman, J. Jansen, M. Wullink, K. Vink, and M. Simon, “A privacy
framework for DNS big data applications,” Tech. Rep., 2015. [Online].
Available: https://www.sidnlabs.nl/uploads/tx sidnpublications/SIDN
Labs Privacyraamwerk Position Paper V1.4 ENG.pdf

[18] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, May 2010, pp. 1–10.

[20] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik, “C-store: A column-oriented dbms,” in Proceedings of
the 31st International Conference on Very Large Data Bases, ser. VLDB
’05. VLDB Endowment, 2005, pp. 553–564.

[21] RIPE NCC, “Hadoop PCAP library,” 2015. [Online]. Available:
https://github.com/RIPE-NCC/hadoop-pcap

[22] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035, Internet Engineering Task Force, Nov. 1987.

[23] SIDN Labs, “.nl stats and data: Insight into the use of .nl,” http://stats.
sidnlabs.nl/, 2015.

https://www.abuseinformationexchange.nl/english
http://iepg.org/2015-11-01-ietf94/iepg-moura.pdf
http://entrada.sidnlabs.nl/
https://parquet.apache.org/
http://sidn.nl/en
https://www.sidnlabs.nl/uploads/tx_sidnpublications/SIDN_Labs_Privacyraamwerk_Position_Paper_V1.4_ENG.pdf
https://www.sidnlabs.nl/uploads/tx_sidnpublications/SIDN_Labs_Privacyraamwerk_Position_Paper_V1.4_ENG.pdf
https://github.com/RIPE-NCC/hadoop-pcap
http://stats.sidnlabs.nl/
http://stats.sidnlabs.nl/

	Introduction
	Background
	ENTRADA Requirements
	Cluster Design Choices
	Data Query Engines
	Cluster Architecture

	Data Management
	Data Format
	Data Pre-processing and Partitioning
	Data Storage on HDFS
	Data Analytics
	Data Conversion Monitoring

	Performance Evaluation
	Setup and Datasets
	Parallelizing Queries
	Evaluation Queries and Results
	ENTRADA Applications

	Related Work
	Conclusions
	References

