
Towards automated DDoS abuse protection

using MUD device profiles
Master thesis

Caspar Schutijser

August 2018



Samenvatting

Onveilige Internet of Things-apparaten (IoT-apparaten) vormen een gevaar voor de stabiliteit
van het Internet. Deze onveilige IoT-apparaten worden gebruikt om Distributed Denial of
Service-aanvallen (DDoS-aanvallen) uit te voeren. De Manufacturer Usage Description (MUD)
is een specificatie die wordt ontwikkeld in de Internet Engineering Task Force. Het doel van
MUD is om netwerkbeheerders een stuk gereedschap aan te reiken waarmee de netwerktoegang
van IoT-apparaten beperkt kan worden. MUD stelt een fabrikant in staat om de gewenste net-
werktoegang van een apparaat te specificeren. Het netwerk kan dan de netwerktoegang van het
apparaat beperken tot het strikt noodzakelijke, zodanig dat het apparaat zijn werkzaamheden
kan uitvoeren.

In dit onderzoek wordt de toepasbaarheid van MUD voor het beveiligen van IoT-apparaten
tegen hackpogingen en de bruikbaarheid in DDoS-aanvallen onderzocht. Een systeem waarmee
MUD-profielen automatisch gegenereerd kunnen worden wordt ontworpen en gëımplementeerd.
Vervolgens wordt gecontroleerd of de IoT-apparaten de werkzaamheden nog steeds correct uit
kunnen voeren als het profiel wordt gehandhaafd. Verder wordt er een theoretische analyse
uitgevoerd. Het doel van deze analyse is tweeledig. Ten eerste zal onderzocht worden of het
handhaven van een profiel kan voorkomen dat een IoT-apparaat wordt gehackt. Ten tweede zal
worden onderzocht of een IoT-apparaat kan worden misbruikt in een DDoS-aanval, mocht het
toch gehackt worden.

De gekozen benadering lijkt goed te werken voor specific-purpose (in tegenstelling tot general-
purpose) IoT-apparaten. Verder maken de gegenereerde profielen het inderdaad moeilijker om
een IoT-apparaat te compromitteren. Voor het reduceren van de slagkracht van IoT-apparaten
in DDoS-aanvallen is het echter wel noodzakelijk om bandbreedtebeperkingen op te leggen,
zeker gezien het feit dat steeds meer services op cloudplatformen worden gedraaid.



Abstract

Insecure Internet of Things (IoT) devices are posing a threat to the stability of the Internet.
These insecure IoT devices are used to perform Distributed Denial of Service (DDoS) attacks.
The Manufacturer Usage Description (MUD) is a work in progress specification in the Internet
Engineering Task Force. The MUD attempts to provide network operators with a tool to limit
the network access of IoT devices. The MUD allows a vendor to specify the network access
requirements of a device. The network is then able to restrict the network access of the device
to the absolute minimum that is required to let the device carry out its functions.

The applicability of the MUD in protecting a device against hacking attempts and usability in
DDoS attacks is examined in this research. A system to automatically generate MUD profiles is
designed and implemented. It is then verified whether the IoT devices are still able to function
properly once the profile is enforced. Furthermore, a theoretical analysis is performed. The
goal of the analysis is twofold. First, we will verify whether enforcing a profile prevents an IoT
device from being hacked. Second, we will verify whether an IoT device can be misused in a
DDoS attack if it were hacked anyway.

For specific-purpose (as opposed to general-purpose) IoT devices, the approach taken to gener-
ating MUD profiles appears to work well. Furthermore, the generated profiles do indeed make
it harder to compromise an IoT device. However, in order to make IoT devices less useful in
DDoS attacks once they are compromised, it is recommended to apply rate limiting, especially
as more services are moving to cloud platforms.
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Chapter 1

Introduction

In the past, most devices were not connected to the Internet, either because the Internet did
not exist yet or it was too expensive to connect them. These days, that is not the case any
more and as such, it is more common to connect devices to the Internet. This phenomenon is
sometimes called the Internet of Things (IoT).

In an in-home setting, customers are usually unaware of the fact that (IoT) devices must be
managed. This means that security updates often are not installed and that the default settings
of the devices are not changed [49]. As such, the adoption of IoT devices results in an enormous
number of Internet-connected devices that can be exploited with relative ease. The Mirai botnet
exploited this situation and created a botnet of IoT devices that was used to perform Distributed
Denial of Service (DDoS) attacks against a number of companies and important infrastructure,
including Dyn DNS [6, 11]. The scale of disruption caused by Mirai was considered an existential
threat to the Internet [26]. Other IoT botnets emerged besides Mirai, such as Reaper [34].

The Manufacturer Usage Description (MUD) [37] is a work in progress specification by the
Operations and Management Area Working Group (opsawg) working group [31] at the Internet
Engineering Task Force (IETF). The idea behind this specification is that, once an IoT device
connects to a network, the device informs the network about what network resources it needs
to function properly. This information is contained in a MUD profile. It describes the intended
network activity of a device in a whitelist-based manner. Since the whitelist is supposed to
be exhaustive, this means that access to any other network resource can be denied without
impeding the functionality of the device. As such, this should be an effective way of restricting
the network access of an IoT device. As a consequence, this may reduce the attack surface of
the device and as such may make the device more secure.

The goal of the research documented in this thesis is to evaluate MUD profiles; specifically, to
evaluate how useful MUD profiles are to prevent an IoT device from being hacked and from
being misused in DDoS attacks. However, the MUD specification is not finished yet, let alone
implemented on devices. Despite these barriers, it would be interesting to investigate MUD.
Therefore, our goal is to generate MUD profiles automatically. Those generated MUD profiles
are necessary to carry out the research, but generated MUD profiles are potentially useful to
protect IoT devices that do not support MUD as well (under the assumption that they are not
infected yet). In order to generate a MUD profile, it is necessary to determine what kind of
network access a device requires. Furthermore, in order to evaluate whether a MUD profile is
suitable for protecting an IoT device from being hacked, it is necessary to know how IoT devices
were hacked in the past. As such, it is useful to investigate the characteristics of earlier attacks.
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This research was carried out at Stichting Internet Domeinregistratie Nederland (SIDN) [51].
SIDN is the organization responsible for managing the .nl top-level domain. SIDN attempts to
address the problem of insecure IoT devices being used in DDoS attacks with a project called
Security and Privacy for In-home Networks (SPIN) [52]. SPIN is software that is intended to
run on the routers of home networks. Currently, the software visualizes the network activity of
IoT devices and the user is able to block certain traffic. The evaluation of MUD was carried
out in the context of the SPIN project.

1.1 Research Questions

The goal of the research is to evaluate the applicability of MUD in the context of protecting
IoT devices against hacking attempts and being misused in DDoS attacks. However, MUD
as a specification is still a work in progress and as such, no devices currently on the market
implement MUD. In order to be able to evaluate MUD despite this fact, MUD profiles will be
automatically generated. The automatic generation of MUD profiles will stay relevant once the
MUD specification is finalized, for instance to limit the network access of IoT devices that do
not support MUD. This results in the following main question of the final project:

To what extent can automatically generated MUD profiles be used to prevent IoT
devices from being hacked and/or from being misused in DDoS attacks?

To answer the main question, the following questions will be answered first:

RQ1
What information is needed to generate a MUD profile of an IoT device?

RQ2
Are IoT devices able to function properly once generated MUD profiles are enforced?

RQ3
Does enforcing the generated MUD profile prevent IoT devices from being hacked?

RQ4
If an IoT device were hacked anyway, does enforcing a MUD profile prevent IoT devices
from being misused in (for instance) a DDoS attack?

1.2 Structure

The remainder of this thesis is structured as follows. Chapter 2 provides background to this
research and related work, Chapter 3 describes an architecture devised to generate and enforce
profiles, Chapter 4 describes the prototype which implements the devised architecture, and
Chapter 5 evaluates the implemented prototype. Finally, Chapter 6 summarizes the results and
provides conclusions. Appendix A provides additional details regarding the implementation
considerations of the prototype.
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Chapter 2

Background and Related Work

This chapter provides information on a number of topics related to this research. The goal is
to provide some background and to show what kind of research has already been done which
will be useful in this work.

As attacks such as Mirai showed, there are a number of IoT devices on the market that are
easy to hack and misuse in attacks. The insecurity of IoT devices is discussed in Section 2.1.
In this research, the plan is to evaluate the usefulness of the Manufacturer Usage Description
(MUD). However, the MUD specification (which is described in Section 2.2) is still a work in
progress. As a consequence, no implementations of MUD exist yet, both in IoT devices and in
the network infrastructure that would support enforcing such a profile. Despite the fact that
MUD is not yet finished, it would be interesting to be able to evaluate the usefulness of MUD.
In order to do that, two things are needed that do not yet exist: profiles for IoT devices and a
way to enforce such profiles. In order to be able to create a profile for an IoT device, it must
first be clear what information a profile actually consists of. Furthermore, it is necessary to
know how this information can be gathered. A review of existing literature on this topic can
be found in Section 2.3. Furthermore, to assess the effectiveness of enforcing profiles against
hacking attempts, it is necessary to know about the characteristics of earlier attacks. Section
2.4 will give an overview of information in this area. Finally, Section 2.5 will address other
attempts at generating MUD profiles.

2.1 Insecurity of IoT Devices

Before discussing how to protect IoT devices, we first need to discuss the state of IoT security
and the security practices of the IoT industry. Unfortunately, poor security and disregard for
best practices are the rule rather than the exception in the IoT market. This is shown by
Antonakakis et al. [11], who describe how the Mirai botnet grew and infected other devices.
The authors note that an important factor in the success of Mirai was the fact that security
best practices are not followed by most vendors in the IoT industry. For instance, many devices
are shipped with default passwords. This made it feasible to log in to hundreds of thousands of
devices with a dictionary attack (using a small list of known default usernames and passwords).
Furthermore, IoT devices are shipped with a number of ports opened by default, accessible to
anyone, even though that is unnecessary for the device to function.

Due to the way most new IoT products are developed, it is often hard or impossible for the
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vendors to patch vulnerabilities or to support the product for the entire lifetime of the product.
This situation is aptly described by Bruce Schneier [48]. Chipset vendors do not take the time
to build a proper architecture that can be supported for a long time. Rather, new chipsets
are rushed to market and once the chipset has been released, work begins on a new chipset.
Instead of documenting the hardware and releasing open source drivers, it is common practice
to use closed source drivers, also known as binary blobs. Such drivers often only work with a
specific software version, like the 4.4 branch of the Linux kernel. The fact that the driver only
works with a specific version of the software means that it is difficult to support (i.e., patch) the
software once that specific version reaches the end-of-life (EOL) state. Note that this situation
is not limited to the IoT market; for instance, the “smartphone” market suffers from the same
problems, particularly in the case of Android phones [18].

There are early signs that the industry is starting to understand that it is necessary to keep
Internet-connected devices supported for a longer period of time. The Civil Infrastructure
Platform (CIP) [1] is a project hosted by the Linux Foundation that receives support from a
number of key industry players such as Hitachi and Siemens [4]. One of the goals of the project
is to create a super long-term supported kernel [17] that should be maintained for 20 years
or even longer. However, this project requires long-term commitments from the industry and
it remains to be seen whether that will be the case. Furthermore, before this project brings
about the desired change, it must first be incorporated into products by the manufacturers,
something that does not happen overnight. As such, this effort will not contribute to improving
the situation in the short term.

In conclusion, the fact that most IoT devices are unpatched and insecure is a fact that will
remain unchanged in the short term. Therefore, it is necessary to investigate how to protect
IoT devices against outside threats. One possible solution is limiting the network access of
the devices. In the long term, the development process of IoT device manufacturers should
change such that it becomes viable to properly support the software for the entire lifetime of
the products. Efforts such as the super long-term supported Linux kernels could help in that
respect.

2.2 The Manufacturer Usage Description

The Manufacturer Usage Description (MUD) [37] is a work in progress specification currently
being written by the opsawg IETF working group. In summary, the idea behind MUD is that
once an IoT device connects to a network, the device tells the network what kind of network
access it needs to perform its functions. For instance, some devices may only need to access
the printer on the local network and the update service of the manufacturer to do their job. As
such, the network access of the device can be limited to those two network resources without
impeding the functionality of the device, which potentially improves the protection of the IoT
device against unauthorized access and the consequences thereof, such as being part of a DDoS
attack.

MUD is specifically targeted towards IoT devices, as opposed to general-purpose computing
systems. The reasoning behind that decision is that IoT devices supposedly have a well-defined
function and as such, it should be fairly straightforward for the manufacturer to enumerate
the network resources they need. Therefore, it is considered feasible to create a whitelist that
can be enforced successfully without interfering with normal usage. This is much harder for
general-purpose computing systems, as the manufacturer does not know beforehand how the
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device will be used.

When analyzing these statements a bit further, it becomes clear in what cases MUD is supposed
to be applicable (at least according to the vision of the authors of MUD). Devices that have
a specific and fairly static function fall within the bounds; devices on which all kinds of apps
can be installed (which brings all kinds of network access requirements as well) are not within
bounds. Examples named in the specification that fall within bounds are light bulbs and
printers. Examples of devices not covered by MUD are “smartphones” or “smart” TVs. Those
are devices that lean more towards being a general-purpose device.

Since the specification is still in a work in progress state, there are currently no devices that
implement this specification. One of the authors of the specification did say that he knows of
two software implementations of MUD [36]. However, those implementations are not publicly
available yet.

According to the authors of the MUD specification, it is the sole responsibility of the manu-
facturer to create an appropriate MUD profile for a device; the manufacturer is considered a
trusted party. The reason for that is that the manufacturer is the only party that can correctly
determine what network resources a device needs and what resources it does not need. However,
since the manufacturer is fully trusted in this model, the possibility exists that manufacturers
will create MUD profiles in which the device is allowed to do more than absolutely necessary to
perform the functions of the device. Something similar happens in the “smartphone” market,
where applications request more permissions than strictly necessary [22]. On the other hand,
if the manufacturer does not want to place any restrictions on what network resources the de-
vice can access, the manufacturer may choose to not create a MUD profile at all. Possibly,
manufacturers could be forced to implement proper MUD profiles, for instance by government
regulations.

The specification mentions some security considerations. For instance, what is preventing a
device from acting like it is another device in order to get more permissions on the network? The
authors have some ideas on addressing this issue, for instance using IEEE 802.1AR certificates
[5]. Using this standard, “A Secure Device Identifier (DevID) is cryptographically bound to a
device and [it] supports authentication of the device’s identity” [30]. This requires the vendor
to embed additional hardware in the device. Note that security considerations regarding the
transport and authenticity of MUD profiles are not related to the research questions. As such,
those considerations are out of scope for this research and not discussed any further.

2.3 Determining Device Network Access Requirements

The problem of determining what kind of network access a device requires can be approached
from multiple angles. Those angles are described in this section.

Attempting to create a profile of the behavior of a device such that certain traffic can be flagged
is not a new concept. In fact, that is one of the methods to perform intrusion detection. A
survey conducted by Sabahi et al. [47] shows that when applying intrusion detection, one way
to process the information is to apply profile based anomaly detection. When applying anomaly
detection, it is necessary to “define a region representing normal behavior” [15]. As such, there
first is a training phase, during which a profile of the normal behavior is built, followed by a
testing phase, during which the profile is used to classify new data [42]. Often, defining such a
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region is not an easy task for various reasons. For instance, it may be hard to define a model
that includes all normal behavior. Furthermore, the normal behavior may change over time.

RFC 2722 [14] outlines a way of looking at network traffic. Network traffic is described as a
collection of flows. A stream of packets is considered to be part of a particular flow if a set
of attributes match. In the case of Internet traffic, such attributes typically include the source
and destination IP addresses, the protocol used on the transport layer and transport layer port
numbers (if applicable). This specific set of attributes is also known as the five-tuple. Additional
attributes may be stored. For instance, attributes that are frequently stored are timestamps
that indicate when the first and last packet of a flow were observed. Furthermore, it is possible
to keep track of the number of packets and bytes that were exchanged. “Network entities” that
observe packets are called meters. A typical example of a meter is a router. Each meter stores
flow information in so-called flow tables. That way, the information can be queried later. An
implementation of a system that collects flow information is NetFlow [16]. NetFlow is typically
used in corporate networks. With NetFlow, network traffic is usually sampled for performance
reasons.

Flow records contain IP addresses, not the domain names that were used to look up the IP
addresses. In certain applications, the domain name belonging to an IP address in a flow record
is more interesting than the IP address itself. After all, when a user or an application connects
to a server, a DNS lookup is performed to obtain the IP address for a given domain name.
Therefore, if the operator of the domain name changes the IP address of the domain name,
a future flow will contain a different IP address, even though the user is connecting to the
same service. To overcome these problems, Bermudez et al. [13] annotate flow records with
domain names. This is done by inspecting DNS answer packets and associating the resulting IP
addresses to the IP addresses found in the flow records. Note that the reverse DNS lookup of
an IP address often does not provide useful information on which specific domain or subdomain
was accessed. Therefore, just performing a reverse DNS lookup is not sufficient.

With Software-Defined Networking (SDN), the so-called control plane is detached from the data
plane [12]. Effectively, this means that a network switch just forwards packets according to some
rules (flows). Those flows are installed by a controller, an external system. If a packet arrives
that does not have an applicable flow, the packet is sent to the controller. The controller can then
inspect the packet and make a decision as to what needs to happen with the packet (for instance,
the controller can opt to create a new flow in the switch). Flows can match a packet based on
certain properties of a packet, such as source/destination MAC address, source/destination IP
address, source/destination application level port and some other properties.

Mehdi et al. [38] bring SDN to the home network. They use OpenFlow to analyze the network
connections that are set up. With OpenFlow, a packet that does not match one of the installed
flows is sent to the controller. Mehdi et al. leverage this by not installing any flows into the
router. As such, every time a new connection is set up, the controller is informed and gets
to decide whether the connection should be allowed, in which case two flows are installed, or
whether the connection should be dropped. This way, it is possible to inspect every connection
while keeping the number of packets that need to be analyzed by the controller low.

In the area of Internet of Things, Habibi et al. [27] provide a solution specifically tailored
towards IoT devices. The proposed system attempts to create a profile for each device, mainly
consisting of “a whitelist of all the destinations that the device can legitimately contact in order
to perform its functions.” All traffic is considered benign, unless the destination is present on
the VirusTotal blacklist, in which case the traffic is blocked. The system continuously evaluates
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new destinations and adds them to the whitelist as necessary. According to the authors, this is
a “practical and low-overhead” approach.

2.4 Characteristics of Earlier Attacks

In this section, we describe literature that provides information on the characteristics of earlier
attacks and hacking attempts. Such information is useful in order to understand how to protect
IoT devices from being hacked and misused in attacks. This allows us to validate the generated
MUD profiles, which in turn allows us to answer Research Questions 3 and 4.

Khattak et al. [32] provide an analysis of botnets. Specifically, it discusses how to detect
botnets and how to defend against them. It provides a taxonomy of botnets in general, not
about one botnet specifically. According to Pa et al. [41], telnet daemons are (still) present
on a significant number of devices and used to build botnets. Kishore [10] similarly notes that
telnet (and sometimes SSH) is used to gain access to devices in order to add them to a botnet.

There is also literature available about specific botnets, such as Mirai. Mirai is a botnet that
infected IoT devices and used those devices to perform DDoS attacks. Mirai is interesting in
particular because it was able to take Dyn DNS offline [6, 11]. Fortunately, the behavior of Mirai
is well-documented. For instance, the propagation strategy is described by Kolias et al. [33]. An
infected device scans the Internet for other vulnerable devices. Mirai probablistically attempts
to connect to either TCP port 23 or port 2323. If it succeeds in setting up a connection, it
tries to log in to the device using a small list of known usernames and passwords (shipped by
default on the devices). Once infected, the devices were used for DDoS attacks. Mirai performed
application layer attacks, volumetric attacks and TCP state exhaustion attacks, as noted by
Antonakakis et al. [11]. Furthermore, it is noted that the IP address of the targeted device is
encoded in the TCP sequence number of the probe packet. By doing so, the scanning process
can be made stateless which makes it more efficient. This information aids the detection of
Mirai traffic.

Another botnet, Reaper or IoT reaper, has been discovered by Netlab 360 [2, 3]. Reaper
propagates by using known (but unpatched) vulnerabilities. The developer(s) of Reaper actively
add new exploits to their toolkit as new vulnerabilities become public. The infected devices
connect to a number of known IP addresses and domains, for instance to fetch commands or
to share information with the botnet operators. This should make it straightforward to detect
Reaper botnet activity. So far, the botnet has not been used for an attack but it is clear that a
new botnet is being built and it may just be a matter of time before it will be used in a DDoS
attacks or other unwanted activities. Another example of a botnet that is likely to exploit
known vulnerabilities is the Satori botnet [7]. After the publication of a new buffer overflow
vulnerability in the uc-httpd web server [40], the botnet started scanning TCP ports 80 and
8000, port numbers that are often used for web servers.

Once a device has been compromised and added to a botnet, the attacker often continues
interacting with the hacked device. For example, the attacker may want to perform a DDoS
attack or update the malware installed on the device. In other words, the device needs to
be controlled by the attacker. This is called command and control [21]. There are different
ways attackers interact with the devices in their botnets. Those ways are often categorized
as (1) a centralized architecture, with the infrastructure controlled by the attacker, or (2) a
distributed architecture, using peer-to-peer networks [29]. In the past, centralized botnets often
used Internet Relay Chat (IRC) to communicate with their devices. These days, centralized
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botnets often communicate using HTTP or a custom protocol on top of TCP. For instance, the
Satori botnet reports port scan results to a server running at a specific IP address and port [7].

Attackers build botnets to carry out DDoS attacks, for example. A DDoS attack can be carried
out in many ways [55]. For example, the attacker can instruct the devices to flood a victim
with ICMP, UDP or TCP packets with the goal of saturating the Internet connection of the
victim. Instead of using the devices to attack the victim directly, it is also possible to carry
out a amplification attack. When carrying out a amplification attack, an attacker sends a small
packet to a server - often a server running a UDP-based service such as memcache, DNS or NTP
[9, 19] - soliciting a big response. This small packet contains a spoofed IP source address, the
address of the intended victim. As a result, the big response will be sent to the victim rather
than the hacked device, contributing to the DDoS. Unfortunately, IP address spoofing remains
a usable strategy as long as many Internet Service Providers do not implement BCP 38 [23].
Besides amplification attacks, the hacked devices can also target the victim directly. Possible
attacks include various types of flooding, such as SYN flooding or ICMP flooding [43].

One of the ways IoT botnets are investigated is by deploying honeypots. Honeypots [46] are
systems that are used to observe what attackers are doing. Usually, honeypots are systems
that are easy to log in to, similar to vulnerable IoT devices. Such systems are easy to log in
to for instance due to the use of passwords that are easy to guess. Once the attacker logged
in successfully, the attacker’s activity is carefully monitored. This allows the operator of the
honeypot to learn about the activities of the botnets. Possibly, the botnets attempt to infect
the honeypot with malicious software that would add the honeypot to the botnet. In this case,
the operator of the honeypot would obtain a copy of that malware which allows the malware
to be investigated. Using honeypots, Pa et al. were able to determine that a majority of the
investigated botnet families support UDP flooding and TCP flooding as methods to perform
DDoS attacks [41].

The information presented in this section provides an insight into the approaches taken by
attackers. This is useful in the this research as this improved understanding makes it possible
to verify whether the developed measures actually improve the safety of the IoT devices.

2.5 Other Attempts at Generating MUD Profiles

During the course of this research, a paper was published by Hamza et al. named Clear as MUD:
Generating, Validating and Applying IoT Behaviorial Profiles [28]. In this paper, the authors
attempt to generate MUD profiles by first creating a pcap of the network traffic of a device.
The pcap is then fed to a tool called mudgee which generates a MUD profile for the device.
Rather than verifying whether the MUD profile helps against hacking attempts, the authors
“checks its [the generated MUD profiles] compatibility with a given organizational policy”. As
it happens, the approach taken to generate the MUD profile is quite similar to the approach
taken in this research. The fact that those researchers independently designed a similar system
may indicate that the approach taken is the logical first choice.
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Chapter 3

Approach

The goal of this research is to evaluate MUD and its applicability in protecting IoT devices
against hacking attempts and usability in DDoS attacks. A key element of evaluating MUD
is the need for device profiles. However, at the start of this research, a system able to create
such profiles did not exist yet. Therefore, it was necessary to create a system that can somehow
create such profiles. Collecting information necessary to create profiles and constructing profiles
by hand does not scale. Therefore, the goal is to automate this process. In order to reach the
above stated goals, the following requirements are defined:

Requirement 1
The system must collect information which can be used to generate MUD profiles.

Requirement 2
During the collection phase, the system must be able to process live network traffic, as
well as recorded network traffic (from a pcap file, for instance).

Requirement 3
The system must be able to enforce a generated MUD profile in order to limit the network
access of an IoT device.

Requirement 4
All processing (i.e., the collection, generation and enforcement of a profile) must be per-
formed on the router of the in-home network.

From the requirements, a number of activities that the system needs to perform become clear.
Those activities are depicted in Figure 3.1. The activities outlined in the figure are described
in more detail in the remainder of this chapter.

Collect

information

Generate

profile
Enforce
profile

Update

profile

Figure 3.1: Schematic overview of the activities of the system.
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Figure 3.2: Schematic overview of a typical home network.

3.1 Collecting Information

The first step in generating a profile is actually collecting the necessary information. From a
high level, a stream of packets will be observed and relevant information will be extracted and
stored. The remainder of this section will describe these steps in more detail.

In Chapter 2, methods of determining what kind of network access a device needs were outlined.
Such information can be used to create a profile of a device’s network activity. In this research,
flow records (see Section 2.3) were used to characterize the traffic. For a number of reasons,
flow records are very suitable for this research. For instance, flow records contain the type of
information that is necessary to build profiles of network activity of a device. Furthermore,
compared to other methods such as deep packet inspection, flow records are an efficient way
of keeping track of network activity. It is efficient in terms of the required processing power,
as well as storage requirements. This is an advantage since the network traffic will need to be
analyzed on the home router. The home router usually is constrained in terms of processing
power and storage capacity.

Information about the network activity of a device can only be collected from a device that is on
the path from the device to the Internet. Compared to a corporate network, the typical home
network infrastructure is usually not very sophisticated (see Figure 3.2): all network devices are
in the same broadcast domain and sometimes, all devices are directly connected to the home
router (either via Wi-Fi or via a network cable, possibly with Ethernet switches in between).
As such, the home router is on the path to the Internet for all devices on the network, which
makes it a suitable spot for collecting information. Another device that is also on the path
to the Internet for all devices is the modem (although, sometimes the modem and router are
integrated into one device). However, the modem is tasked with decoding signals from the
wire into zeros and ones and vice versa. Specifically, the modem is not concerned with the
interpretation of the information that is transferred with the stream of bits. Therefore, it is not
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practical to inspect IP traffic at this level.

The collected data must be stored somewhere for later use. The network infrastructure of a
home network usually consists of just the modem and the router (sometimes those two devices
are even integrated). Not adding another device to the infrastructure lowers the barrier for
consumers to actually install such a device in their network. As such, it is preferable to store
the collected data on the device itself, i.e. on the router.

For these reasons, we decided to use the home router for data collection and storage in this
research.

3.1.1 Processing the Packets on the Wire

During the collection process, a stream of packets is observed. In order to collect flow records,
it is not necessary to perform deep packet inspection. This has a number of advantages. For
instance, deep packet inspection comes with privacy concerns. Additionally, performing deep
packet inspection on all packets would not be practical due to the processing power restraints.
Furthermore, the use of encryption reduces the usefulness of deep packet inspection [50]. As
such, only a subset of the available information will be used.

When looking at the OSI model, information from layer 2 upwards is available. For each packet,
the following information is inspected (categorized by OSI model layer) and stored:

Layer 2
The Ethernet MAC addresses in each packet.

Layer 3
Source and destination addresses in the headers of the IPv4 or IPv6 packets, and the
transport layer protocol (examples: TCP or UDP). (if applicable)

Layer 4
The port numbers of the TCP and UDP headers, and the size of the payload in bytes. (if
applicable)

The information described above can be used to reconstruct flow records that describe the
network activity of a device. Information that is not necessary to create flow records is not
stored. Notably, the payload of TCP and UDP packets is not stored. Furthermore, IP header
fields such as the time to live and the checksum or the TCP sequence and acknowledgement
numbers are not stored, again because they are not necessary to reconstruct flow records.

Besides collecting basic information as described above, additional information is gathered by
performing deeper inspection on certain types of packets. To be more specific, this is the case
for ARP (and its IPv6 counterpart named NDP), TCP, and DNS.

ARP and NDP
MAC addresses (OSI layer 2 addresses) can be used to uniquely identify a device while
a device may have multiple IP addresses (OSI layer 3 addresses). Furthermore, the layer
3 addresses may change over time, for instance because they are often assigned dynami-
cally. As such, it is necessary to create a mapping between layer 2 addresses and layer 3
addresses.

However, it is not sufficient to just store all combinations of layer 2 addresses and layer
3 addresses that appear on the network interface. We will demonstrate this with an
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example. Host A resides in the 192.168.8.0/24 subnet. The IP address of host A
is 192.168.8.123, and the gateway of the subnet is 192.168.8.1. If host A wants to
communicate with host B (192.168.8.20) which resides in the subnet, host A can send the
packet directly to 192.168.8.20 using Ethernet. This means that the layer 2 destination
address will contain the layer 2 address of host B, and the layer 3 destination address will
contain the layer 3 address of host B. However, when host A wants to communicate with
212.114.98.233, a host outside the subnet, the packets must be routed by the gateway.
In this case, the layer 2 destination address will contain the layer 2 address of the gateway
while the layer 3 destination address will equal 212.114.98.233. If we would store all
combinations of layer 2 and layer 3 addresses, the gateway would appear to have a lot
of layer 3 addresses while that is not true. This shows that it is not sufficient to store
all combinations of layer 2 and layer 3 addresses that appear on the network interface;
rather, it must be verified whether a layer 3 address belongs to a device that is on the
local network. When processing live traffic, information about the network (such as the
netmask) is available and could be used to make a distinction between layer 3 addresses
that are inside the subnet and addresses that are outside the subnet. However, when
processing recorded traffic (pcap files, for example), such information is not available.

Fortunately, this information can be extracted from the Address Resolution Protocol
(ARP) and Neighbor Discovery Protocol (NDP) protocols. ARP is used to find the MAC
address for a given IPv4 address while NDP is used similarly for IPv6 addresses. This is
done by broadcasting an ARP or NDP request into the network. All devices that reside
in the same broadcast domain or subnet receive such a packet and are able to respond.
When a device receives an ARP or NDP request and the IP address configured on the
network interface equals the IP address requested in the packet, the device will respond
with a reply. Therefore, it is necessary to extract this information from the network traffic
by inspecting ARP and NDP traffic.

TCP
Besides inspecting the ARP and NDP packets, the Transmission Control Protocol (TCP)
deserves special attention as well. When a TCP connection is initiated by a client, the
client sends a TCP packet with the SYN flag enabled to a server. If the server decides to
accept the connection, the server replies with a packet with both the SYN and ACK flag
enabled. Finally, the client responds with a packet in which the ACK flag is enabled. From
this point onwards, the client and the server are able to exchange data. This is known as
the three-way handshake. The presence of the SYN flag can be used to deduce which host
initiated the connection. This bit of information is stored for later reference. Why we will
need this information will become clear in Section 3.2.2.

DNS
The final protocol that receives more attention is the Domain Name System (DNS) at
OSI model layer 7. The DNS is used, among other things, to obtain an IP address for a
given domain name. This is useful because users do not like to remember IP addresses.
Furthermore, using a domain name rather than an IP address unties a service from the
location at which it is hosted. As such, when a device connects with an IP address,
that specific IP address is not very interesting on its own when it was obtained using the
DNS. The device may connect to a different IP address in the future if the IP address
for the domain name is changed by the service’s operator. Therefore, DNS packets are
inspected more deeply1. Specifically, DNS packets that contain an answer (one or multiple

1This is the only case where deep packet inspection is performed.
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IP addresses) to an earlier asked question (a domain name) are inspected. This is done
such that an IP address can later be mapped back to a domain name. This is similar to
the approach taken by Bermudez et al. [13].

Sufficient information has been collected once one is certain all kinds of data has been measured.
In order to reach this point, it is a good idea to (a) make sure all features of the device have
been used as each feature can expose different network access requirements, and (b) leave the
device running for a minimum amount of time (24 hours, for instance). This way, network
traffic generated by periodic activities are captured as well. An example of such a periodic
activity is an automatic update check that is performed at specific time intervals. To illustrate
how these considerations work out in practice, imagine an Internet-connected light bulb that
can be controlled through an application on a phone. The light bulb can be switched on or off,
the color and the brightness can be changed, and possibly a time schedule can be set up. Using
the different features may use different API’s and therefore requires different network access.
Furthermore, the device may check for software updates every 24 hours. This feature again will
expose different network access requirements.

3.2 Generating a Profile

Now we will explain how a profile is generated. A profile can be generated once sufficient
information has been collected (see the previous section). A profile consists of a whitelist of
destinations a device is allowed to contact. Additionally, it also contains a whitelist of remote
systems that are allowed to initiate contact with the device. The flow information captured
during the collection process (described in the previous section) will be used to generate those
whitelists. This section describes the process behind generating those profiles.

3.2.1 Selecting Relevant Flows

The flow records that were collected in the previous step have been persisted by the collection
program. These persisted flow records contains information about the network traffic of all de-
vices in the network. In order to generate a profile for a specific device, the relevant information
needs to be selected from the collected data.

Each device is connected to the network using a network interface (be it an Ethernet interface
or Wi-Fi interface). Those network interfaces can be uniquely identified using a MAC address.
As such, the network activity of a device is tied to this MAC address. Therefore, to generate a
profile for a specific device, all flows matching a certain MAC address should be selected.

An alternative but inferior option is matching flows based on the IP addresses. While it certainly
is possible to select the flows matching a certain IP address, IP addresses are usually allocated
dynamically to a device and as such are not a robust way to attribute traffic to a specific
device. This is especially the case when measurements are performed over a longer period of
time. This again highlights why it is useful to use the information obtained from ARP (and
its IPv6 counterpart NDP) to determine which MAC addresses belong to devices on the local
network.
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3.2.2 Direction

Given the flow records, it is known which hosts communicated and which protocols were used.
However, as an example, in the case of a TCP [45] connection that was set up successfully,
there will be two flow records: a flow record with traffic from host A to host B, and a flow
record with traffic from host B to host A. This is because packets flowed in both directions.
For generation of the profile, it is necessary to know which side of the connection initiated the
connection. That is necessary because the server port is the relevant piece of information, while
the source port is often chosen at random by the client and as such should not be used in the
profile. In the case of TCP, determining which side initiated the connection is straightforward:
as was described in Section 3.1.1, information about the connection setup is embedded in the
protocol header. As such, it is straightforward to deduce this information from just inspecting
the packet headers.

In the case of UDP [44], this is not as straightforward. UDP is a stateless protocol and as such
is not aware of the concept of “connections”. This does not mean that the client-server model,
used as an example earlier, is not used with UDP. When using DNS, for instance, the DNS
resolver library (the client) sends a DNS query to a DNS server. A DNS server is typically
listening on UDP port 53 while the client port is usually chosen at random. As such, with UDP
it is also the case that the server port is the important piece of information that is to be used
in the profile while the source port is of little relevance.

3.3 Enforcing a Profile

Once a profile has been generated, the profile can be enforced. This means that the network
access of the device will be restricted to the whitelists specified in the profile. Before we can
enforce a profile, we need to make a number of decisions. For instance, we must decide in which
location in the network the profile will be enforced. Furthermore, we will need to decide how
the profile is actually implemented.

The profile will be enforced at the home router. The reasons are similar to the reasons the home
router is responsible for inspection of the packets during the collection phase (see Section 3.1).

The profile can be enforced in a couple of different ways. At first sight, a straightforward
approach appears to be to generate firewall rules and install them into the firewall. The home
router presumably already has firewall software installed and enabled, or it is possible to install
and enable a firewall. However, this method has a drawback. The profile consists, among other
things, of a list of domain names. Domain names can be resolved to IP addresses. However,
DNS records have a TTL associated with them, which means that the returned result will not
stay valid indefinitely. As such, it is not sufficient to look up a domain name and use the
resulting IP addresses in a firewall rule; if the IP address for a domain name changes, the user
will connect to the wrong IP address.

Therefore, another approach is necessary. One approach to solving the problem of expiring
DNS records is to keep track of the DNS traffic during the time the profile is enforced. When a
DNS query and answer is observed, the query can be looked up in the whitelist. If the domain
name is present in the whitelist, the resulting IP addresses can be whitelisted in the firewall. If
the domain name is not in the whitelist, nothing needs to be done. However, if the DNS traffic
is inspected passively, a race condition may occur in the following sequence of events: (1) A
DNS answer is delivered to the device while the DNS answer has not been processed yet by
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the application responsible for inspecting the DNS traffic. As such, the firewall rule allowing
the traffic to the destination has not been added yet. (2) The device attempts to contact
the destination. Since the firewall rule allowing the traffic to the destination has not been
added yet, the device will fail to contact the destination and will observe failure. Depending
on the behavior of the application running on the device, this sequence of events will lead to a
temporary or permanent failure. Either way, this race condition should be avoided. Therefore,
it may be necessary to delay the DNS response until the firewall rule has been added.

An even better approach is to keep track of the DNS traffic, but not just as a passive observer.
Rather, position yourself in the network stack and when a DNS answer arrives, look up whether
the domain name is in the whitelist and if it is, somehow make sure traffic to the IP addresses is
allowed and only once that has been arranged, the DNS answer will be sent back to the device
that performed the DNS lookup. This will prevent the race condition that exists in the first
solution.

Now that the issue regarding DNS has been addressed, we turn our attention to another problem.
Most firewalls are OSI layer 3 firewalls. However, profiles are generated for a specific MAC
address. A MAC address is an OSI layer 2 address. Therefore, a firewall cannot work with
MAC addresses right away. To be specific: when a packet arrives from a network interface into
the firewall, it is able to observe from which MAC address it came by inspecting the Ethernet
header. However, it will not know which MAC address a packet will be delivered to since the
MAC address corresponding to the IP address is looked up at a later stage in the ARP or NDP
table. Despite those problems, it would be nice to use a firewall for enforcing the profiles. A
solution to this problem is to look up the IP addresses belonging to the MAC address upon
enforcing the profile.

Looking up the IP addresses belonging to the MAC address upon enforcing the profile comes
with a disadvantage, however. If the IP address of a device changes (either legitimately or
illegitimately), the device is able to bypass the imposed rules. This disadvantage could be
mitigated by disallowing any traffic from or to local IP addresses that are not explicitly used
by a profile. A stronger solution which immediately addresses the problem of devices spoofing
their MAC address is to use something like IEEE 802.1AR [5], a solution also mentioned by
the authors of the MUD specification. In order for this to be used, the devices need to support
that standard.

3.4 Updating a Profile

This section describes why it potentially would be necessary to update a profile. Furthermore,
it is described how a profile would be updated.

Once a profile has been generated and is being enforced, it may be necessary to update the profile
of a device. This is necessary when the network access patterns of the device have changed.
There are two reasons for this to happen. (1) The user may have changed their behavior. For
instance, the user may have started using a feature that was not used during the information
collection period. (2) The IoT device may have received a software update. A new version of
the software running on a device may introduce new feature or change existing features. In
either case, the device may attempt to access a network resource it does not have access to. As
a result, it will experience failure. The first case can be prevented by making sure the collected
data used to generate the profile is adequate. Guidelines on generating profiles can be found in
Section 3.1.1.
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If it is indeed deemed necessary to update the profile of a device, it is necessary to collect
new information about the network activity of the device. This means that the profile that
is currently enforced needs to be “unenforced”. After all, if the old profile is determined to
be insufficient, the device must be able to contact that are not in the whitelist of the current
profile. Effectively, the entire sequence of activities (see Figure 3.1) - collecting information,
generating a profile, and enforcing a profile - has to be performed again to create an updated
profile. Since the activity of updating a profile consists of steps that were already described
previously, it is not necessary to write additional code in order to support this feature.

22



Chapter 4

Prototype

This chapter describes how the architecture described in Chapter 3 was implemented as a
prototype. Building a prototype of the proposed system is beneficial. For instance, it can be
used to show that the proposed architecture can be used to successfully generate and enforce
profiles for IoT devices. This will assist in answering Research Question 2.

The prototype was built in the context of the SPIN project. Therefore, we will first describe the
relevant parts of the architecture of the SPIN software. Furthermore, we will describe how the
implemented prototype fits in the architecture of SPIN. Finally, we will describe the components
that the prototype consists of.

4.1 The Valibox and SPIN

The SPIN software runs on the Valibox. The Valibox is a mini-router that runs a custom
OpenWRT build. Originally, the goal of the Valibox was to provide a DNSSEC-validating
recursive resolver for the in-home network. Nowadays, the Valibox also ships with the SPIN
software as a prototype. The goal of SPIN is to protect the home network. It focuses on IoT
devices and the security problems that result from using IoT devices.

The Valibox OpenWRT firmware typically runs on a GL-iNet device such as the GL-iNet

Figure 4.1: A GL-iNet AR150 running the Valibox OpenWRT firmware.
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Figure 4.2: Schematic overview that shows how information about network traffic is distributed
through the SPIN system.

AR150 [24] (see Figure 4.1). This mini-router has 64 megabytes of RAM and a MIPS 24Kc
CPU running at 400 Megahertz. By default, it runs OpenWRT, a tiny Linux distribution
geared towards embedded devices. OpenWRT is typically used on routers. The device has two
Ethernet interfaces. One of the Ethernet interfaces is labelled LAN and can be used to connect
the device to the local area network. The other Ethernet interface is labelled WAN and is
intended to be used to connect the device to another device that can provide connectivity to
the Internet. Furthermore, the device also has a Wi-Fi interface.

Currently, the SPIN software is able to visualize network traffic in a web application. It visualizes
network traffic by depicting hosts as nodes; traffic between two hosts is visualized as an edge
between the two nodes. Besides visualizing traffic, SPIN can be used to block certain traffic
flows or to disconnect a device from the local network entirely.

The message bus is an important building block of the SPIN architecture, as is shown in Figure
4.2. The message bus is used to exchange information between components of SPIN. Using this
model, information can be published onto the message bus by one or multiple publishers and
the information can be used by one or multiple consumers. This model is used, amongst other
things, to distribute information about network traffic that has been observed. The SPIN traffic
collector observes network traffic flowing through the Valibox router and it publishes aggregated
flow records onto the message bus. This information can be consumed by multiple applications.
The SPIN traffic visualizer is an example of an application that consumes this information. Note
that components in the system are not necessarily just a producer or consumer. For instance,
the application that visualizes the network traffic can instruct another part of the SPIN system
to disconnect a certain device. In this case, the traffic visualizer is not just a consumer, but it
also publishes information.

4.2 Overview of the Prototype

The system described in Chapter 3 was implemented such that it leverages the architecture
used by the SPIN project. Therefore, it uses the message bus and message formats as used
by SPIN. As is shown in Figure 3.1, the proposed system needs to carry out four activities:
(1) collect information; (2) generate a profile; (3) enforce a profile, and (4) update a profile.
The prototype implements those activities. Figure 4.3 shows which components the prototype
consists of. The remainder of the chapter will discuss the components of the prototype, guided
by the four activities the prototype needs to perform. To make clear which component is being
discussed, Figure 4.3 will be used throughout the chapter. For each component that is being
discussed, the figure will be shown and the discussed component will be highlighted in the figure.
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Figure 4.3: Schematic overview of the components necessary to generate and enforce MUD
profiles.

4.3 Collecting Information

The first activity, collecting information, is taken care of by two separate components: the
Traffic collector and the Database writer (see Figure 4.3). The traffic collector publishes the
information onto the message bus. However, this information needs to be persisted such that
information can be collected over a period of time and a profile can be generated later. Therefore,
this activity consists of a second component as well, the Database writer. This component is
responsible for storing the flow records in the database. It does so by subscribing to the
message bus, and writing the flow records published by the traffic collector to a database. This
component is described in Section 4.3.2.

The SPIN software already provides a traffic collector that publishes information about the
network activity onto the message bus (see Figure 4.2). However, there are two reasons why the
SPIN traffic collector is unsuitable for this research (in its current form). (1) The SPIN traffic
collector is only able to observe live network traffic; in particular, it is not able to read a file
containing network traffic that was collected earlier (like a pcap file). This is relevant because
being able to use recorded traces makes it easier to test the software. Additionally, it is useful
to be able to use pcaps that are provided by other people. (2) The SPIN traffic collector does
not emit information on which side of a (TCP) connection initiated a connection. In order to
generate accurate profiles, this information is necessary (see Section 3.2.2). Implementing this
feature in the SPIN traffic collector was considered but ultimately this path was not pursued.
Implementing it properly would probably be rather time-consuming. Furthermore, it could have
crossed other efforts to improve SPIN in this area, resulting in duplicated or unnecessary work.
Therefore, it was considered necessary to build a new implementation of the traffic collector.
This new traffic collector is described in Section 4.3.1.

4.3.1 Traffic Collector

Database
writer

Profile
generator

Profile
enforcer

iptables

DB

flow
records

flow
records

flow
records profile

iptables
rules

Message bus

flow
records

Traffic
collector

25



This section details our own traffic collector. Our own traffic collector can be used as an
alternative to the SPIN traffic collector. In summary, it is able to parse the packets in a pcap
file and produce output that is (more or less) compatible with the SPIN software. In addition to
reading a pcap file, the program is also able to listen to a network interface to capture packets
on a live network. The traffic collector is able to publish the extracted flow records onto the
message bus in order to emulate the SPIN traffic collector.

The traffic collector uses libpcap, a common library used to either capture packets on a live
network interface or read a pcap file which contains packets that were captured earlier. We
decided to use this format and library because the pcap format is well supported by other tools.
Examples of such tools include Wireshark, a tool used to inspect packet traces. Furthermore,
the libpcap library is available on all popular general-purpose operating systems, which makes
the program portable to other operating systems.

Handling the Packets

In order to collect flow records, the traffic collector inspects each packet that appears on the
network or in the pcap file that is being read. As is shown below, a distinction is made based
on the Ethernet type of each packet. The rationale for inspecting each of the packet types can
be found in Section 3.1.1.

ARP
If the packet is an ARP packet, it is verified whether the ARP packet is an ARP reply.
An ARP reply is a response to an earlier broadcast ARP request, in which a device on the
network asks which MAC address serves a certain IPv4 address. If that is the case, the
MAC address and the IPv4 address are stored in a table. This way, it can be determined
which IPv4 addresses belong to devices on the local network and which IPv4 addresses
are not on the local network.

IPv4 and IPv6
If the packet is an IPv4 or IPv6 packet, the “next protocol” field of those headers is
examined:

ICMPv6
(This can only happen if the packet is an IPv6 packet) In the case of an ICMPv6
packet, it is examined whether the ICMPv6 type of the packet is ND NEIGHBOR ADVERT.
NDP is the IPv6 counterpart of ARP for IPv4.

TCP
The TCP port numbers are stored. Additionally, it is verified whether the packet is
the initiation of a connection. This is the case when out of the SYN and ACK flag,
only the SYN flag is set.

UDP
The UDP port numbers are stored, similar to TCP.

Besides collecting flow records, it is also necessary to collect DNS responses. With the DNS
responses, we are able to annotate IP addresses in the flow records with domain names. When
either port number in a TCP or UDP packet equals 53, the packet could be a DNS packet so it
is handed off to the function that attempts to parse DNS packets. To parse the DNS packets,
the ldns library is used. It is verified whether the packet has any answer records. If that is the
case, those are printed to the console. Note that the implementation is not aimed to be one
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of production quality; in particular, it is probably vulnerable to DNS cache poisoning. When
more time is available, it is possible to mitigate such risks.

As was noted earlier (but repeated here to emphasise the fact), our traffic collector is able to
deduce and export which side of a TCP connection initiated the connection while the traffic
collector provided by SPIN in its current form is not able to do that.

4.3.2 Database Writer
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The database writer subscribes to the message bus and reads the data that is published by
either our traffic collector or the SPIN traffic collector. The flow records are then stored in a
SQLite database. The data model of the database can be found in Section 4.4.

Upon startup, the programs first make sure the SQL database exists; if it does not, it is created
first. Then, it subscribes to the message bus. It will then processes the flow records one by one,
as they appear on the message bus. For each flow record, it is first verified whether that flow
already exists in the database. That is done by performing a SELECT query. The query verifies
whether a flow with the same attributes (such as IP addresses, transport layer protocol and port
numbers) already exists in the database. The flow must not be older than an hour, otherwise
it is not considered “current”. If a flow record already exists, an UPDATE query is executed to
update the observed number of packets and bytes. If the flow record does not exist, an INSERT

query is executed to insert the new flow in the database. The database currently has not been
designed to achieve high performance. However, achieving high performance is out of scope as
the goal is to build a prototype of the proposed system, not production grade software. More
details on the data model of the database can be found in the next section.

4.4 The Database
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A database is used by the database writer (see Section 4.3.2) to store flow records. The database
software that is used to store the data is SQLite. This section first describes why SQL and
SQLite were used, as opposed to alternatives. It then describes the data model of the database.

The flow records that are collected by the traffic collector are persisted by the database writer
for later use. A number of options for storing the flow records are available. For instance, a
possibility is to export and store NetFlow or IPFIX records. Another possibility is to use an
SQL database. Yet another option is to use a custom file format.

Compared to SQL, NetFlow or IPFIX records are not very suitable for querying. However,
querying the data is necessary when generating profiles. Additionally, storing the information
we collect in the NetFlow or IPFIX formats does not provide any additional benefits. We
consider that to be the case because we collect the same type of information that is collected
when using NetFlow or IPFIX. With that being said and the querying argument in mind, we
prefer SQL over NetFlow or IPFIX records.

When comparing SQL and a custom file format, we prefer to use SQL. Most importantly, there
is a myriad of tools and libraries available to work with SQL and as such, it is straightforward
to use SQL in applications. This makes it convenient for other developers to use the collected
data. There are cases where using a custom file format is warranted, but in this case it would
not provide much benefit while increasing the amount of work necessary to use the data in an
application. Therefore, we decided that the collected flow records will be stored in an SQL
database.

As the database software, we decided to use SQLite. SQLite is light-weight and has few de-
pendencies, which makes it very suitable for use on resource-constrained devices such as the
Valibox (see Section 4.1). Furthermore, SQLite is easy to use; using a database does not require
setting up any users or granting users permissions. Yet, despite being a light-weight database,
SQLite is powerful software that provides a relational database.

The database consists of a number of tables and a number of views. The most important table
is the table named flows. It contains a representation of the flows observed by the traffic
collector. The data model of the table can be found in Table 4.1. The second and last table is
the dns table. The data model of this table can be found in Table 4.2.

Note that the chosen type seems a bit odd at first for certain fields, for instance in the case
of the IP address where the string type was chosen. An IP address could be more efficiently
stored as an integer and the database could potentially perform input validation. However, the
textual representation of an IP address is easier to use for developers. Some databases have a
special type that can be used for IP addresses or MAC addresses [53] which allow for typing
the IP address in a textual representation but use an efficient representation in the database.
However, SQLite does not have such a type and therefore, a decision had to be made between
efficiency and developer convenience. Since this code is part of a prototype and not production
software, developer convenience was considered more important than efficiency and as such, the
string type was used to store IP address.

Besides the tables, there is a view that combines the data from both tables into an annotated
flows table which adds domain from and domain to fields. The fields equal NULL unless a domain
name for a certain IP address is found in the dns table. The timestamp and TTL are taken
into account.
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Field name(s) Field type Description

id Integer ID that is automatically allocated.
mac from, mac to String The MAC address of the device the traf-

fic originated from/to. Only available if
the device was determined to be in the
local network (see Section 3.1.1 for more
details).

ip from, ip to String The IP addresses involved in the flow.
ip proto Integer The transport layer protocol number as it

appears in the IP protocol header. Exam-
ples: 6 (TCP), 17 (UDP).

tcp initiated Integer Always 0 if ip proto does not equal 6

(TCP). If ip proto equals 6, this field
equals 1 if the TCP connection was ini-
tiated by the host specified in ip from.

port from, port to Integer The transport layer protocol port num-
bers. Only valid if ip proto equals 6 or
17.

packets Integer Number of packets of this flow.
bytes Integer Number of bytes of this flow.
first timestamp, last timestamp Integer Timestamps in the UNIX timestamp for-

mat. first timestamp signifies when the
first packet of this flow was observed,
last timestamp signifies when the last
packet of this flow was observed.

Table 4.1: Data model of the flows SQL table.

4.5 Generating a Profile
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Field name(s) Field type Description

id Integer ID that is automatically allocated.
domain String The domain name of the lookup.
ip String The IP address that was returned for the domain that was

looked up.
timestamp Integer UNIX timestamp at which the answer was observed.

Table 4.2: Data model of the dns SQL table.
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The profile generator uses the database that contains flow records to generate a profile for a
specific device. The data model of the database can be found in Section 4.4.

The program has three modes of operation, each of which is elaborated on below:

1. generate a profile for a specific MAC address.

2. generate a profile for a specific IP address;

3. generate profiles for all devices found in the database;

When generating a profile for a specific MAC address, only the flows related to that specific
MAC address should be selected from the database. To that end, only the flows that have the
selected MAC address in either the mac from or mac to field are of interest. With this selection
in mind (which is implemented by adding a WHERE clause to each query which specifies the MAC
address), a number of SELECT queries is performed. A number of distinctions is made when
performing the SELECT queries:

• Does the traffic flow either from or to the specified MAC address?

• Is the transport layer protocol either TCP, UDP or something else?

• Was the connection initiated by the MAC address’ device or was the connection initiated
by the other side? This applies to the TCP and UDP cases. In the case of TCP, the value
can be taken directly from the tcp initiated field in the flows table in the database.
In the UDP case, the program optionally guesses which side is the client or the server:
when one of the port is lower than 1024, it is considered the server port. This heuristic
stems from Unix. Historically, only the superuser (root) was able to bind to a port below
1024. These ports are sometimes called privileged ports. In the case of the DNS protocol,
for instance, this guess proves to be useful as the DNS server listens on port 53. A better
approach would be to keep track of this in the data collection program; however, since
the necessary information is not exposed from the UDP headers (unlike the SYN flag in
the TCP header), this would require more computing power.

• Is the remote service identified by an IP address or by a domain name?

Generating a profile for a specific IP address is similar to generating a profile for a specific MAC
address. However, instead of selecting a specific MAC address, a specific IP address is specified.
Note that generating a profile for a specific IP address is usually not appropriate. It must be
kept in mind that a device possibly has more than one IP address (an IPv4 address and an
IPv6 address, for instance). Furthermore, IP addresses of a device may change. If possible, this
feature should not be used.

Finally, the program is able to generate profiles for all devices found in the database. This
is done by first querying for all MAC addresses found in the database. Then, for each MAC
address, a profile is generated using the process described above.

A profile emitted by the profile generator contains the following information:

• The MAC address of the device.

• A list of hosts that the device is allowed to contact, separated by transport protocol (TCP,
UDP). It also includes the port numbers.

• A list of hosts that are allowed to contact the device. Also in this case the transport
protocols and port numbers are specified.
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4.6 Enforcing a Profile
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In order to enforce the profile generated in the previous step, the profile must be turned into
firewall rules. Then, those rules have to be installed into the firewall. This is done by the Profile
enforcer.

The output of the profile enforcer consists of lines that can be fed to a UNIX shell. Each
line contains an invocation of either iptables or ip6tables. iptables operations that are
performed are the flushing of the FORWARD chain, creation of new chains and insertion of rules in
those new chains. The output of this program can be piped to a UNIX shell, which subsequently
executes the resulting output and thereby imports the generated firewall rules into the actual
firewall.

The firewall works with IP addresses while the profile is generated for a specific MAC address
(see Section 3.3). This means that at the moment the profile is to be enforced, it is necessary to
look up the IP addresses belonging to the MAC address. This is done by querying the neighbor
table of the Linux kernel. For each of the IP addresses found in the table, the profile enforcer
generates the same set of rules (with the exception that of course, iptables is invoked for
IPv4 addresses and ip6tables is invoked for IPv6 addresses; additionally, there are no rules
generated for ip6tables involving an IPv4 address and vice versa).

The iptables firewall is not able to work with domain names. Instead, it is necessary to specify
firewall rules using IP addresses. Due to time constraints, we decided to look up the domain
names at the time the rules are installed and use the IP addresses that were returned at that
point in time. As described in Section 3.3, a disadvantage of this method is that a firewall
rule will become outdated once the operator of the domain changes the IP address behind the
domain name. However, given the fact that we are building a prototype, this disadvantage was
considered acceptable.

The generated firewall rules are stateful rules. This means that the firewall, when evaluating
a packet, does not just look at the packet under evaluation. Rather, any packets that may
have been observed previously are also taken into account [25]. This is done by keeping track
of packets that have been observed earlier during the same connection. In the case of TCP,
the IP addresses and TCP port numbers are used to match packets to a certain connection.
Additionally, the stateful firewall will keep track of the TCP state machine. In the case of
connectionless protocols such as UDP or ICMP, there is no state machine to keep track of.
Therefore, in the case of UDP, IP addresses and UDP port numbers are usually the only bits
of information used to match packets to a connection. We will now illustrate how this works
in practice with an example. Imagine that host A accesses the Internet through the stateful
firewall. The firewall has a rule which allows outbound traffic to UDP port 53. Additionally,
the firewall does not contain any firewall rules which allow inbound traffic. Host A sends a
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UDP packet to host B, a host which is reachable by going through the firewall. The UDP
packet has 53 as its destination port and 28433 as its source port. When the packet reaches the
firewall, the firewall evaluates its rule set and finds that the packet is allowed to go through.
Additionally, the firewall creates an entry in the state table which indicates that host A sent a
packet to host B from port 28433 to 53. The packet is processed by host B and host B sends
a reply. The source port of the reply packet equals 53, and the destination port equals 28433.
The firewall verifies whether the combination of IP addresses, transport layer protocol and port
numbers exists in the state table. Since that is the case, the packet will be allowed through.
The packet is allowed through despite the fact that there is no firewall rule which allows any
inbound connections.

4.6.1 Limitations of the Implemented Prototype

In the area of profile enforcement, the implemented prototype has a number of limitations. One
of those limitations is the fact that domain names in profiles are looked up only upon profile
enforcement (see the previous section). Additional limitations are discussed below.

Traffic on the local network
Traffic from or to the Internet flows through the firewall and as such is subject to the rules
imposed by the firewall. However, traffic between two local devices does not go through
the firewall since the devices are in the same broadcast domain and as such do not need a
router to route packets for them; instead, the packets are sent directly to their neighbors
using Ethernet. As such, an enforced profile will not restrict traffic that stays on the local
network.

There are solutions to this problem. For instance, Mortier et al. [39] propose and imple-
ment a method to force devices to route their local traffic through the router as well. As
a short and incomplete summary, the idea is to allocate a /30 network for each device in
the network. The device is assigned an IPv4 address in this /30 and the router also is
assigned an IPv4 address in this /30. Traffic between devices then needs to travel from
one /30 to the other and as such, it must be routed through the router. Therefore, the
router is able to filter such traffic. This method breaks broadcast traffic; broadcast traffic
stays inside a /30 and as such does not reach other devices inside the network. Mortier et
al. deal with this by rewriting the destination address of the broadcast traffic and making
sure it is sent to the other device’s /30s as well.

Due to time constraints, this method has not been implemented for this prototype and as
such, local traffic is unaffected by the imposed rules. Only traffic from or to the Internet
is subject to the enforced profile. To illustrate this, we will use the network from Figure
3.2 as an example. Traffic between the fridge and the Internet would be subject to the
profile. However, traffic between the phone and the fridge would not be subject to the
profile as the phone and the fridge both reside in the local network.

Portability of the generated firewall rules
The iptables rules that are generated by the profile enforcer are tailored towards the way
iptables is used in OpenWRT. As such, in order to use the programs on a “normal” system,
the profile generator needs to be adapted slightly.
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4.7 Updating a Profile

The last activity, updating a profile, is not depicted in Figure 4.3. That is the case because,
as was described in Section 3.4, the process of updating a profile is actually composed of steps
that were already implemented previously. During the period in which the prototype was used,
it has not been necessary to update the profile. As outlined in Section 3.4, there are two
reasons for updating a profile: either the user behavior changed such that updating the profile
becomes necessary, or a software update was installed onto the IoT device. However, neither of
these events occurred during the testing phase. Therefore, it was not necessary to perform this
step. However, since this activity consists of executing steps which were already implemented,
updating a profile would be straightforward.
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Chapter 5

Evaluation

With the prototype built, it is time to evaluate it. We evaluate the prototype in order to verify
that the implemented system matches the expectations encoded in the Research Questions. The
evaluation will be performed by defining criteria and verifying whether the prototype meets the
criteria. The first step in evaluating the prototype is to determine what properties or statements
actually need to be evaluated. The prototype was built based on the Research Questions. As
such, the criteria will based on the Research Questions as well, in order to verify whether the
prototype meets our expectations.

5.1 Defining Criteria

Research Questions 2, 3, and 4 relate to the properties of the resulting prototype. This is
not the case for Research Question 1. Therefore, Research Questions 2, 3 and 4 are suitable
for basing criteria on. Guided by those Research Questions, the following criteria are defined.
Those criteria correspond directly to Research Questions 2, 3, and 4. We will verify whether
the prototype meets those criteria.

Criterion 1
The IoT device is able to function properly once a profile that has been generated for the
device is enforced.

Criterion 2
The enforced profile prevents the IoT device from being hacked.

Criterion 3
The enforced profile prevents the IoT device from being misused in an attack if it were
successfully hacked anyway.

5.2 Criteria Satisfaction

Now that the criteria have been defined, it will be determined for each of the criteria when they
are met. All criteria have in common that in order to meet them, it is necessary to generate
and enforce profiles for devices. In other words, all components of the prototype (as shown
in Figure 4.3) will be exercised in order to get to the point where a generated profile can be
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enforced. Detailed instructions on how to use the prototype are found in Appendix A.2, so they
are not repeated here. Instead, this section focuses on how to determine whether the criteria
are met, which can be done if the prototype is used according to the provided instructions.

5.2.1 Criterion 1

Verifying whether criterion 1 is satisfied consists of two steps: (1) The profile should be generated
and enforced (see Section A.2). (2) It should be verified that the device still functions properly.
Step (2) consists of two parts: (2a) Use the device and observe whether the device still functions
according to expectations. That is done by using the different features a device provides. For
instance, in the case of a Philips Hue bridge, the tester could connect a phone and light bulbs
to the bridge, turn on the light bulb, change the color of the light bulb, etc. (2b) Analyze the
network traffic that is generated while performing the tests. In particular, we verify whether
the traffic generated by the device is allowed by the profile. During this observation and while
the profile is enforced, it may be the case that the device attempts to contact a domain that is
not in the whitelist of the profile1. If that is the case, this possibly indicates that the profile
is not complete. This needs to be investigated on a case by case basis. The network traffic is
monitored in two ways: (i) the packets dropped by the iptables firewall are inspected (if any),
and (ii) during the testing, tcpdump is used to capture the network traffic such that analysis can
be performed later, if necessary. For step (2), it is possible to make the test results more robust
by documenting all steps taken while testing the device to ensure reproducibility. However,
producing precise but lengthy documentation on how to test the devices is out of scope for this
research.

5.2.2 Criteria 2 and 3

Criteria 2 and 3 both revolve around the IoT device being the center of attention of an attacker.
The most common way for an attacker to interact with its victims is by sending malicious traffic.
Other methods, where the attackers do not pro-actively send traffic, also exist; for instance,
registering an expired domain used by the devices and move from there. In order to verify
whether criteria 2 and 3 are met, it is necessary to know more about the traffic the attackers
are sending to the devices. There are multiple methods of investigating the attackers’ traffic
and its effects. Two of such methods are described below.

Replaying attack traffic
One of the methods is to replay attack traffic against a device while the profile is enforced.
An advantage of this technique is that a simulation like this comes really close to reality
because the attack is not just simulated but actually performed. As such, when the
device is protected during this test, it is likely to be protected in the real world. A
disadvantage is that, in order to replay attack traffic against a device, it is necessary to
actually have network traffic of botnet activity. Such traffic is not always easy to get
access to. Additionally, depending on the contents of the replayed traffic and on whether
the profile actually succeeds in blocking the traffic, the attack against the device may
actually succeed. For instance, if the replayed traffic would immediately add the device to

1Note that in this case, while the device attempts to contact a domain that is not in the profile, it will not
actually succeed in doing so since the domain name is not in the whitelist. This event can be recognized from
the pcap traces as follows: the device attempts to initiate a TCP connection (i.e., a TCP packet with the SYN

flag set is sent), but the router replies with an ICMP Destination Unreachable message.
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Abbreviation Description Involved protocol(s)

TCP/22 Dictionary attack against SSH daemon TCP, port 22
TCP/23 Dictionary attack against telnet daemon TCP, port 23 or 2323
TCP/80 Vulnerability in HTTP server TCP, port 80 or 8000

Table 5.1: Summary of common methods to gain access to IoT devices used by botnets.

a botnet, the device could become a participant in the botnet. Therefore, when replaying
attack traffic against a device, it is necessary to take appropriate precautions to prevent
any of such problems.

Analyzing literature and attack traffic
Another method is to analyze literature and attack traffic (if available) and extract char-
acteristics of the malicious network traffic. This can be done on different levels. For
instance, it is possible to look at packet sizes or packet rates. Alternatively, it is possible
to look at which transport layer protocols and port numbers were involved (for instance:
telnet on TCP port 23). Furthermore, it is possible to perform deep packet inspection.
In the case of the telnet protocol, the traffic is not encrypted. This makes it possible for
an observer to determine how the attacker is interacting with the victim. For instance, it
is possible to distinguish between failed login attempts and successful login attempts.

For this research, a theoretical approach towards gathering information about the attackers’
activity is chosen. As such, literature has been studied and captured traffic will be analyzed for
patterns. In particular, traffic will not be replayed against a device. We expect that a literature
study and traffic analysis will provide a sufficient amount of information. It is uncertain how
valuable replaying attack traffic would be while it would be time-consuming to create a proper
setup in which malicious traffic can be replayed against devices in a safe manner.

We now have decided that we are going to use literature as a source of information regarding
attackers’ network. However, verifying whether criterion 2 holds needs different information
than verifying whether criterion 3 holds. In order to verify whether criterion 2, The enforced
profile prevents the IoT device from being hacked, is satisfied, it is necessary to know how
attackers compromise devices and add the devices to their botnets. From the literature in
Section 2.4, Table 5.1 has been derived which summarizes the common ways unauthorized access
to IoT devices is gained. Those methods can be compared against the whitelist of incoming
traffic in the generated profiles to see whether the malicious traffic would reach the device or
not.

Conversely, in order to verify whether criterion 3, The enforced profile prevents the IoT device
from being misused in an attack if it were successfully hacked anyway, is satisfied, the questions
that need to be answered are (a) how do the attackers instruct the devices what to attack, and
(b) what kind of traffic does the attack consists of. Answers to those questions can also be
found in literature. We will use those answers to theorize whether a device would actually be
vulnerable, for instance by comparing the generated profiles against the information found in
the literature. From the literature reviewed in Section 2.4, we find that the answer to (a) is
that the botnet is either controlled via a centralized infrastructure controlled directly by the
attacker, or via a peer-to-peer network. In the former case, often HTTP or a custom protocol
is used. From the same literature, we find that IoT botnets mostly carry out UDP and TCP
floods. This answers (b).

37



Internet

Valibox

wired connection
wireless connection

Device A Device B Device C Device D Device E Device F

Figure 5.1: Schematic overview of the network that was used to evaluate the prototype. Legend:
Device A: TP-Link LB100; Device B: VStarcam D1 Door Camera; Device C: Sonoff S20; Device
D: Samsung TV; Device E: Motorola Moto X Force; Device F: Philips Hue Bridge.

ID Product name Type of device Network connection type

F Philips Hue Bridge Light bulb controller Wired
A TP-Link LB100 Light bulb Wireless
B VStarcam D1 Door Camera Doorbell with camera Wireless
C Sonoff S20 Power socket Wireless
D Samsung TV TV Wireless
E Motorola Moto X Force2 Mobile phone Wireless

Table 5.2: Devices that were used with the developed prototype.

5.3 Network Setup

In order to evaluate the prototype, it was necessary to deploy the prototype into a test network.
This section describes the setup of the network that was used to evaluate the prototype.

The network closely resembled a typical home network as depicted in Figure 3.2. As is shown
in Figure 5.1, the core of the network, consists of the Valibox mini-router (see Section 4.1). If
possible, the devices were connected to the network using a wired connection. Those devices
were connected to an Ethernet switch, and the Ethernet switch was connected to the LAN port
of the Valibox. The other devices were connected to the network via the Wi-Fi access point
provided by the Valibox. During the period in which network traffic was collected, the devices
could access the Internet without any restrictions. Table 5.2 shows which devices were part of
the network.

2While this phone is technically not an IoT device depending on which definition of IoT is used, verifying
whether a profile can be generated and used successfully is still valuable.
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Device Criterion 1 satisfied?

Philips Hue Bridge yes
TP-Link LB100 yes
VStarcam D1 Door Camera yes
Sonoff S20 yes
Samsung TV yes
Motorola Moto X Force yes

Table 5.3: Shows per device whether criterion 1 is satisfied or not.

Host Protocol Port number Direction

devices on local network TCP 80 Incoming

bridge.meethue.com TCP 80 Outgoing
dcp.cpp.philips.com TCP 80 Outgoing
dcs.cb.philips.com TCP 80 Outgoing
diagnostics.meethue.com TCP 80 Outgoing
fds.cpp.philips.com TCP 80 Outgoing
time.meethue.com TCP 443 Outgoing
ws.meethue.com TCP 443 Outgoing
www.ecdinterface.philips.com TCP 80 Outgoing
www2.meethue.com TCP 443 Outgoing
0.openwrt.pool.ntp.org UDP 123 Outgoing
1.openwrt.pool.ntp.org UDP 123 Outgoing
2.openwrt.pool.ntp.org UDP 123 Outgoing
3.openwrt.pool.ntp.org UDP 123 Outgoing
time1.google.com UDP 123 Outgoing
time2.google.com UDP 123 Outgoing
time3.google.com UDP 123 Outgoing
time4.google.com UDP 123 Outgoing
valibox UDP 53 Outgoing
valibox UDP 67 Outgoing

Table 5.4: Profile that was generated and enforced for the Philips Hue Bridge.

5.4 Evaluation Results and Discussion

The evaluation plan as outlined in Section 5.1 has been carried out on the network described
in Section 5.3. The results are presented and discussed in this section.

5.4.1 Criterion 1

We first turn our attention to criterion 1, The IoT device is able to function properly once a
profile that has been generated for the device is enforced. As is shown in Table 5.3, all tested
features were observed to function correctly and monitoring the network traffic did not reveal any
(attempts at) disallowed communication. As an example, Table 5.4 shows the profile that was
generated and enforced for the Philips Hue Bridge. It shows that the device initiates contact
to a number of HTTP/HTTPS services. Additionally, it uses the NTP and DNS protocols.
Finally, it is shown that port 80 is being used by a device on the local network to contact the
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Philips Hue Bridge. Using this port, a mobile phone is able to issue commands to the Philips
Hue Bridge.

The Motorola Moto X Force is not an IoT device but a mobile phone. Therefore, we explicitly
note how we evaluated the profile for this device. The usability test consisted of the following:
it was verified that two messaging applications (Signal and WhatsApp) still function properly.
Additionally, the Google Play Store was opened and the command was given to check for
updates. Furthermore, the web browser was used to open a particular web site. We verified
whether other web sites indeed were inaccessible, which was the case.

Discussion

As shown in Table 5.3 the devices subject to the profile enforcement were still able to carry out
their functions correctly. However, a generated profile may become inaccurate due to changing
network access patterns. This did not happen during the evaluation period but this can (and
will) definitely happen in real-world usage. Network access patterns can change for a number
of reasons:

Changes in user behavior
If the user starts using a feature that was not used during the data collection period, the
device may attempt to access destinations that are not in the whitelist. This would result
in a failure to contact that particular destination.

Software update
Additionally, when a software update is installed, it is possible that the new version of
the software introduces new features that require connections to new destinations, for
instance. We expect that devices that lean more towards specific-purpose computers (as
opposed to general-purpose) will suffer less from these problems as the functionality of
the device is more specific and as such will not change as much. Devices that lean more
towards general-purpose computers are more likely to have the ability to install additional
applications or have a web browser. For each additional application or web site, the profile
may need to be adapted.

Fortunately, the developed prototype is capable of updating an existing profile. This means
that if either of the above events happen, it is possible to update the profile to capture the new
behavior. Note that this limitation only applies to our system that generates profiles automat-
ically. Specifically, this is not a problem that has anything to do with the MUD specification.
After all, if a device would support MUD, the profile would be built by the manufacturer and
therefore, the profile should always be up to date.

A potential problem that remains is when devices, for some reason, alternate between domain
names. For instance, the device could access a numbered resource. An example in this regard is
the Samsung TV which was observed to connect to otnprd8.samsungcloudsolution.net and
otnprd11.samsungcloudsolution.net. If, at a later point in time, the device would attempt
to access otnprd7.samsungcloudsolution.net, a domain name that is not in the profile3,
accessing the service behind that domain name would fail. This in turn would render the
generated profile inaccurate. In the case of the Samsung TV, the purpose of using domain names
like this is uncertain; it is possible that it is used as a way to perform load balancing. Regardless
of the precise reason, this poses a potential problem for automatically generated profiles. Note

3Due to time constraints, it was not verified whether this is actually the case.
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that this is not a problem related to the MUD specification. After all, if manufacturers are
responsible for providing an accurate profile, they can either list all domain names used for load
balancing or choose to use another way of performing load balancing.

Furthermore, it is important to pay attention to a change of behavior that can occur in certain
circumstances. For instance, while the Philips Hue Bridge was tested, it was verified what
would happen when the device was not able to send any traffic to the Internet (except for
DNS). It was observed that the device initially attempts to contact bridge.meethue.com and
www2.meethue.com. When the device repeatedly does not succeed in connecting to those do-
mains, it looks up www.google.com, www.facebook.com, www.baidu.com and www.qq.com and
attempts to set up a HTTPS connection to these domains. This appears to be a connectivity
check. This shows that a profile that is too strict can cause a device to change its behavior. It is
important to pay attention to such behavior changes while working on generating and enforcing
profiles for devices. Otherwise, the profile may contain unintended destinations.

We generated a profile for the Motorola Moto X Force, even though this mobile phone is not
an IoT device. The device was not included because we expected to create a useful profile
for it. Rather, it provided a good way to verify whether the profile was enforced properly.
As a thought experiment, we will consider what a profile for a mobile phone would look like,
even though that is not the main point of this thesis. Given the fact that the mobile phone
is a general-purpose device, it is hard to create a narrow profile for the phone. The generated
profile allows for using certain instant messaging applications, and those specific applications
function correctly. However, for each application that is installed by the user, it is likely that
the profile has to be updated. This is the case since a new application may contact destinations
that are not in the whitelist. Furthermore, with an application such as a web browser, the list of
hosts that may be contacted is infinite. Therefore, using a whitelist with domain names is not
possible. In the case of a web browser, another approach may be more feasible. For instance,
all outbound traffic to port 80 for HTTP and to port 443 for HTTPS could be allowed. While
such a profile will allow the user to browse the Internet, it does not really restrict the network
access of a device. As such, that profile may considered to be of limited value.

As stated in the previous paragraph, generating a useful MUD profile for a general-purpose
device is hard or impossible. This is the case since the activities of general-purpose devices
are very diverse by nature. Therefore, such activities are hard to capture in a narrow profile.
However, we explicitly note that the results indicate that for specific-purpose devices such as
IoT devices, it is possible to generate accurate MUD profiles. As Table 5.3 shows, enforcing
those generated profiles does not impede the functionality of the device.

5.4.2 Criterion 2

We now turn our attention to criterion 2, The enforced profile prevents the IoT device from
being hacked. The results are shown in Table 5.5. The table shows that a couple of devices have
legitimate use for an open port, for instance the Philips Hue Bridge with TCP port 80 and the
TP-Link LB100 with TCP port 9999. Furthermore, it shows that none of the devices need a
telnet or SSH daemon that is accessible to the local network or to the Internet.
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From the literature Found during evaluation
Device TCP/22 TCP/23 TCP/80

Philips Hue Bridge no no yes
TP-Link LB100 no no no TCP/9999
VStarcam D1 Door Camera no no no
Sonoff S20 no no yes
Samsung TV no no no
Motorola Moto X Force no no no

Table 5.5: Shows for each device whether a service was listening on a certain port and whether
that service was observed to be used legitimately during the evaluation period. If that is the
case, (possibly malicious) traffic on that particular port would be allowed by the profile that is
generated for the device.

Discussion

Most attackers attack a device by sending traffic from the attacker towards the device. As all
profiles deny connections from the Internet to be set up, all profiles pass this test. In particular,
when a profile is enforced, it is not possible to connect to a telnet or SSH daemon, if it were
present. To paint a more complete picture, we will now discuss what would happen if local
traffic was also part of the profile. On the local network, legitimate cases have been observed
where a local connection is made to a device. For example, the Philips Hue Android application
initiates HTTP connections to the Philips Hue Bridge in order to control the light bulbs. If the
server software listening on those ports would have a known vulnerability that can be used to
gain access to the device, the generated profiles would not protect the devices from exploitation.
However, it can be said that the attack surface is reduced; rather than leaving ports open of
services that are not used by the user, only the ports necessary for using the device remain
open.

For none of the examined devices, legitimate use of the telnet or SSH port was observed. We will
now consider the security implications of the case where legitimate use of either protocols would
have been observed anyway. In the case of legitimate use of telnet or SSH, the traffic could
originate from two locations: the local network, or the Internet. Legitimate use originating
from the Internet would have big security implications because it would be necessary to leave
those ports accessible from the Internet. On the Internet, bots are continuously scanning telnet
and SSH ports and attempting to break in. Use of strong passwords or authentication keys
would help but that is not something the MUD specification can enforce. The other possibility
is that telnet or SSH would be used from inside the local network. In this case, the threat
of bots continuously scanning for open ports is not present. However, it is not uncommon
for malware to attempt to spread to other devices in the local network of the compromised
device. An example of such malware is Stuxnet [35]. As such, if another device in the network
is compromised, a running telnet or SSH daemon poses a real risk as it could be used by such
malware.

Finally, we will note that an attacker who uses a legitimate, whitelisted channel will not be
stopped using such profiles. In other words, an attacker who interacts with the device through
a whitelisted resource is free to attack the device. The generated profile will not impose any
limitations onto traffic that flows through the legitimate channels. As such, while the use of a
MUD profile will reduce the attack surface, it will not completely eliminate it.
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Figure 5.2: Device A and device B launch a denial of service attack against example.net and
example.org, respectively. Both domains are hosted at the same cloud platform.

5.4.3 Criterion 3

Finally, we turn our attention to criterion 3, The enforced profile prevents the IoT device from
being misused in an attack if it were successfully hacked anyway. The assessment of whether an
IoT device can be used in a DDoS attack is highly dependent on the target that is chosen for
the attack. After all, the whitelist in the profile lists specific domain names and IP addresses.
Therefore, an attack launched by a botnet operator would be permitted by the profile if the
target host and port are permitted in the profile.

Discussion

As was stated earlier, the majority of botnets support UDP and TCP floods to perform DDoS
attacks. When a MUD profile is applied, such attacks can only be performed against services
that are in the whitelist. As such, the number of possible victims is reduced from “everybody
on the Internet” to “the destinations contained in the whitelist of the profile”. This is an
improvement, especially when considering that most DDoS targets will not be part of the
whitelist. For instance, web sites of financial institutions or retailers - common targets of DDoS
attacks [8] - are not present on the whitelist of a Philips Hue Bridge. Furthermore, in order
for the attacker to be able to command and control the hacked device, the attacker should
be able to interact with the device. Regarding peer-to-peer networks used for command and
control, most peers will reside in residential networks. However, most profiles include specific
services from vendors in their whitelists, not residential networks. As such, it is unlikely that
a peer-to-peer botnet would be able to communicate effectively when the profile is enforced. If
an attacker gains access to a server that is in the profile, the infrastructure controlled by the
attacker could be used to interact with the devices. However, contrary to the situation when
no profile is applied, the attacker must carefully choose its infrastructure rather than being
able to use any server. This makes it harder for the attacker to successfully use infrastructure
controlled by the attacker.

The use of cloud platforms is common nowadays. Examples of providers of such platforms are
Amazon with Amazon Web Services and Google with Google Cloud Platform. A significant
part of today’s Internet runs on such cloud platforms [20]. This is also true for services used
by IoT devices. For example, several of the investigated devices connect to cloud platforms of
Samsung, Amazon and Google. Now imagine the following example scenario. Device A and
device B are both IoT devices that reside somewhere in the Netherlands. Device A uses a service
hosted at example.net while device B uses a service hosted at example.org. Both domains
resolve to IP addresses that are hosted at the same cloud platform. The cloud platform provider
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uses anycast, such that those IP addresses are announced from multiple locations around the
world. In this example, we assume that as a result, any packet originating from a host residing
in the Netherlands to those IP addresses will be served by their data center in Amsterdam
(users in other countries are served by other data centers). Now imagine that device A starts a
DDoS attack against example.net while device B launches an attack against example.org (see
Figure 5.2). Since example.net and example.org are both hosted at the same cloud platform,
effectively they are attacking the infrastructure. If the DDoS attack succeeds, the services
provided by that cloud platform would be unavailable to clients in the Netherlands. This
despite the fact that according to the profiles, they are attacking different services. Successfully
attacking a big cloud platform can impact many clients. With this problem in mind, one could
argue that while technically the number of destinations that can be attacked is low, the number
does not have to be very high since a significant part of today’s Internet is hosted by only a
couple of companies anyway4. One way to mitigate this problem is to apply rate limiting to
IoT devices. This would make sure that all devices would still be able to access the services
they need in order to operate. At the same time, the usefulness of the devices in a DDoS attack
would be reduced. Currently, the MUD specification does not include rate limiting. As such,
rate limiting could be an interesting addition or extension to the specification.

5.4.4 Summary

Summarized, enforcing the generated profiles allow the devices to function correctly (criterion
1). However, it is expected that profiles may become inaccurate due to changing user behavior
or software updates. Additionally, enforcing the generated profile reduces the attack surface but
a risk still remains (criterion 2). Furthermore, when a device is hacked anyway, the enforced
profile will reduce the amount of damage an attacker can do, with some caveats (criterion 3).
It is probably a good idea to extend MUD such that it becomes possible to apply rate limiting
to an IoT device.

5.5 Prototype Limitations

The implemented prototype has a number of limitations (in addition to the limitations outlined
in Section 4.6.1). Some of these limitations result from a shortcut being taken during the
development of this prototype. Other limitations result from a changing Internet landscape.
The limitations can be addressed by spending more time on the development of the software.

The prototype looks up domain names embedded in the profiles upon profile enforcement (see
Section 4.6). A better method would be to do this when the device actually requests the domain
name (see Section 3.3). During the evaluation period, this shortcut did not cause any problems.
However, the longer a profile is enforced, the bigger the chance that the cached IP address
for a domain name becomes invalid and the profile does not work as well anymore. This is
not a fundamental problem with the chosen approach; it only is a shortcut taken during the
development of the prototype which could be addressed when more time is available.

Furthermore, it is the case that the prototype does not actually filter any DNS responses. As
a consequence, when a device looks up a domain that it should not be able to access, it will
still receive the resulting DNS answer. With this implementation, it is possible for the device

4It should be noted that those big service providers are probably better at handling DDoS attacks than small
service providers.
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to look up a domain (notallowed.example.net) that it is not allowed to access. However, it
is possible that a domain that the device is allowed to access (allowed.example.org) resolves
to the same IP address as notallowed.example.net. This can happen with shared hosting
or when using cloud services. Then the device may be able to access a service it should not
be allowed to access. Additionally, not filtering DNS responses allows DNS to be used as a
command and control mechanism [54].

Another limitation is that the prototype currently does not work with encrypted types of DNS
such as DNS over TLS and DNS over HTTPS. As those methods become more common, the
current method of annotating IP addresses in flow records with domain names may cease to
work. The problem could be addressed by forcing IoT devices to use the resolver on the local
network. The local resolver could then be instrumented to share information with the software
developed for this research.
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Chapter 6

Conclusion

6.1 Conclusion

At the beginning of this thesis, the main question of this research was defined:

To what extent can automatically generated MUD profiles be used to prevent IoT
devices from being hacked and/or from being misused in DDoS attacks?

To answer the main question, four Research Questions were defined which should aid answering
the main question. The results of RQ1, What information is needed to generate a MUD profile
of an IoT device?, were used to design and implement a system that can generate profiles of
network access. Since the result of RQ1 does not directly contribute to answering the main
question (but only indirectly by assisting in designing the system), the results of RQ1 are not
repeated here. RQ2, RQ3 and RQ4 were answered in Chapter 5. Those Research Questions
were answered by translating them into criteria. For each of the criteria, it was verified whether
the prototype satisfies the criterion. This was done by performing both practical and theoretical
analysis.

The answer to RQ2, Are IoT devices able to function properly once generated MUD profiles are
enforced?, is that profiles can be successfully generated and enforced for the devices used during
the evaluation. A foreseen problem is that legitimate network access patterns may change and
as a result, the profile may become inaccurate. However, the implemented prototype is able to
update an existing profile which may remedy that problem. More work in this area is necessary.

Additionally, to answer RQ3, Does enforcing the generated MUD profile prevent IoT devices
from being hacked?, it was found that an enforced profile reduces the attack surface of the
devices. Therefore, it becomes harder to gain unauthorized access to the devices. As such,
enforcing the profile will reduce the chance of the device being hacked. Nevertheless, some
risk still remains. In particular, it is the case that enforcing such profiles will not help against
hacking attempts that occur using the whitelisted paths.

Furthermore, to answer RQ4, If an IoT device were hacked anyway, does enforcing a MUD
profile prevent IoT devices from being misused in (for instance) a DDoS attack?, it was found
that enforcing such profiles reduces the amount of damage a hacked device can do. In particular,
in order to be able to attack a certain victim, the victim needs to be in the whitelist of the
profile. Especially in the case of specific-purpose devices with strict profiles, this reduces the
number of destinations a device can legitimately (or illegitimately) contact. However, given the
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fact that infrastructure is heavily shared these days (e.g. through the use of cloud platforms),
it will be necessary to apply rate limiting as well, for instance.

Finally, to answer the main question, it is indeed possible to successfully generate profiles that
can be applied to devices. It reduces the chances of being hacked and being misused in DDoS
attacks. However, to further reduce those chances, additional measures such as rate limiting may
be necessary. Another important finding of this work is that the evaluation results indicate that
profiles can be generated automatically from traffic traces for specific-purpose devices without
impeding the functionality of the device. This is considered to be hard or even impossible for
general-purpose devices.

6.2 Future Work

The work presented in this thesis can be improved in a number of ways. As mentioned earlier,
the usefulness of rate limiting should definitely be investigated. Additionally, the prototype
can be improved to eliminate the shortcuts and limitations as described in Section 4.6.1 and
Section 5.5. Furthermore, it would be interesting to know how well updating a generated profile
works.

As shown by this research, IoT devices contain server software which listens on certain ports. It
would be interesting to look deeper into the implementation of this software. For instance, the
server software may contain undiscovered vulnerabilities or other implementation errors. Addi-
tionally, it would be interesting to investigate which cloud platforms are used most frequently
by services used by IoT devices.

Finally, once IoT devices that support MUD are available on the market, it would be interesting
to investigate whether the profiles provided by the manufacturers are as narrow as they could
be. In other words, do the profiles provided by the manufacturers only allow traffic that is
absolutely necessary to use the device or could the profile be even more strict? This could be
done by comparing the profile provided by the manufacturer with a profile that is generated
using the approach described in this thesis.
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Appendix A

Implementation Considerations

A.1 Software

Figure 4.3 shows a number of software components. This section will go into the choices that
had to be made before the first line of code could be written, such as which programming
languages and libraries to use.

Most of the software described in this overview is intended to run on the home router. In
fact, the only program which does not necessarily have to run on the home router is the traffic
collector program. For all the other programs, it makes sense that they run on the home
router. For traffic collection and profile enforcement, this is an absolute requirement. For
profile generation, the benefit of running the code on the router is that the router will be able
to operate independent from any other device in the network.

For the programs that need to run on the home router, it was chosen to use the Lua program
language. One good reason for chosing to do so is the fact that a part of the SPIN code base is
already written in Lua. Therefore, there is no need to install additional runtime environments
or to drastically change the build process of the Valibox OpenWRT image. The author did
not make the decision to use Lua, but certainly can give a couple of reasons why Lua is an
appropriate choice. For instance, Lua is a lightweight programming language; it does not need a
heavy runtime environment to run. This is an advantage in a resource-constrained environment
like a router. Additionally, compared to a programming language such as C, with Lua it is
harder to shoot oneself in the foot with certain types of bugs, such as buffer overflows.

In the case of the traffic collection program, it would be nice if the program can run on the
home router but it is by no means necessary; it is also possible to process a pcap on a desktop
computer and upload the result to the home router (alternatively, the output could be published
onto the message bus). As such, in order to make it possible to run the program on the Valibox,
the initial language choice for this program would be Lua. However, no suitable bindings to
the pcap library were found. As such, it was chosen to use the C programming language. The
program only depends on libpcap and ldns so in terms of dependencies, the program should
be lightweight enough to run it on the Valibox.
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A.2 Using the Prototype

To show how the different components of the prototype work together, this section shows the
sequence of actions that should be performed in order to enforce a generated profile for a
device. It shows that the system can actually be used in practice. Figure 4.3 shows how the
different components interact. This section explains how those different components are named.
Additionally, it explains how to use the software step-by-step.

1. The first step consists of collecting information about the network activity of the device.
The Database writer is implemented as the mqtt nm.lua program. To start this program,
it is sufficient to ssh to the Valibox and execute the mqtt nm.lua program.

When the network activity will be collected using the SPIN software, no additional steps
are necessary since the SPIN software is started automatically at startup.

When a pcap file with previously collected network traffic is available, the pcap-spin-json
program can be used instead of the SPIN software. The program can be used on a
UNIX workstation. To publish the results to the SPIN/traffic MQTT channel, the
mosquitto pub program is used. The run.sh shell script is a convenient wrapper around
pcap-spin-json and mosquitto pub that takes two arguments: the pcap file to be read
and the IP address of the device running the MQTT message broker (the Valibox).

2. The next step is to connect the device to the network and turn it on. It is important to
start the measurements before turning on the device in order to create a complete picture
of what the device is doing.

3. Use the device. During this time, it is necessary to exercise all features of the device
in order to trigger all possible network traffic that can reasonably be expected to occur.
Furthermore, the measurement should be over a timespan that is long enough. This is a
good way to make sure periodic things, such as an update check, is observed and recorded.

4. Stop the measurement. This is done by stopping the mqtt nm.lua program that was
started during step 1.

5. Generate the profile. This is done by using the generate-profile.lua program on the
Valibox. Passing the -a flag will generate profiles for all devices found on the network.
Pass the -j flag to export the profile in JSON format and redirect the output to a file.

6. Enforce the generated profile. This is done by invoking the generate-fw.lua program
twice. Initially, the -i flag must be passed to the program to generate rules that initialize
the firewall. Afterwards, the program should be invoked with -e and the profile generated
in step 5 should be provided on stdin.

The source code of the prototype can be found at https://schutijser.com/msc-thesis-code/.
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